Deutsch English Français Italiano |
<vfqiep$3v4c4$8@i2pn2.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!i2pn.org!i2pn2.org!.POSTED!not-for-mail From: joes <noreply@example.org> Newsgroups: sci.math Subject: Re: How many different unit fractions are lessorequal than all unit fractions? (infinitary) Date: Tue, 29 Oct 2024 11:55:05 -0000 (UTC) Organization: i2pn2 (i2pn.org) Message-ID: <vfqiep$3v4c4$8@i2pn2.org> References: <vb4rde$22fb4$2@solani.org> <062a0fa5-9a15-4649-8095-22c877af5ebf@att.net> <vf8itt$1hosd$2@dont-email.me> <b1e5a319-eaec-44d2-b961-f90bc241e7e6@att.net> <vf8r7k$1jnia$2@dont-email.me> <d316baa3-de5b-4644-86ff-beacad9df107@att.net> <vfd97u$2jtos$1@dont-email.me> <276fc9df-619b-4a10-b414-a04a74aa7378@att.net> <vfe5d5$2olom$1@dont-email.me> <88e6a631-417a-4dd0-9443-a57116dcbd28@att.net> <vfg07k$1chpe$1@solani.org> <7a1e34df-ffee-4d30-ae8c-2af5bcb1d932@att.net> <vfgil3$38pn6$1@dont-email.me> <6a90a2e2-a4fa-4a8d-83e9-2e451fa8dd51@att.net> <vfgqoc$39o4h$2@dont-email.me> <acd4aad3-9447-45a9-bafd-f8b93d781827@att.net> <vfj3v0$1e96h$2@solani.org> <vfjg9h$3rjvp$2@dont-email.me> <vfkqlr$3fii$1@solani.org> <vfl8o7$3mnmt$4@i2pn2.org> <vflfq9$f82l$1@dont-email.me> <vflovl$1fpr2$3@solani.org> <vfm2m5$iasq$1@dont-email.me> <vfnmo3$ui6v$1@dont-email.me> <vfnrri$3r59o$2@i2pn2.org> <vfopes$14lcd$2@dont-email.me> <vfp8fv$3tobi$3@i2pn2.org> <vfq6qb$1fqil$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Tue, 29 Oct 2024 11:55:05 -0000 (UTC) Injection-Info: i2pn2.org; logging-data="4166020"; mail-complaints-to="usenet@i2pn2.org" User-Agent: Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2) Bytes: 2715 Lines: 21 Am Tue, 29 Oct 2024 09:36:27 +0100 schrieb WM: > On 29.10.2024 00:58, Richard Damon wrote: >> On 10/28/24 3:42 PM, WM wrote: > >>> I mean that there are unit fractions. None is below zero. >>> Mathematics proves that never more than one is at any point. >> Which doesn't mean there must be a first, as they aproach an >> accumulation point where the density becomes infinite. > Their density is bounded by uncountably many points between every pair > of consecutive unit fractions: > The density is one point over uncountably many points, that is rather > precisely 0. So not bounded at all. >> Something which can't happen your world of finite logic, but does when >> the logic can handle infinities. > Where does the density surpass 1/10? Can you find this point? How do you define the density at a point? -- Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math: It is not guaranteed that n+1 exists for every n.