Deutsch   English   Français   Italiano  
<vg32t6$3b860$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: How many different unit fractions are lessorequal than all unit
 fractions? (infinitary)
Date: Thu, 31 Oct 2024 21:18:43 +0100
Organization: A noiseless patient Spider
Lines: 30
Message-ID: <vg0on2$2r78m$1@dont-email.me>
References: <vb4rde$22fb4$2@solani.org> <vfe5d5$2olom$1@dont-email.me>
 <88e6a631-417a-4dd0-9443-a57116dcbd28@att.net> <vfg07k$1chpe$1@solani.org>
 <7a1e34df-ffee-4d30-ae8c-2af5bcb1d932@att.net> <vfgil3$38pn6$1@dont-email.me>
 <6a90a2e2-a4fa-4a8d-83e9-2e451fa8dd51@att.net> <vfgqoc$39o4h$2@dont-email.me>
 <acd4aad3-9447-45a9-bafd-f8b93d781827@att.net> <vfj3v0$1e96h$2@solani.org>
 <vflnoq$l02$1@news.muc.de> <vfloff$1fpr2$1@solani.org>
 <vflrt7$h190$3@dont-email.me> <vfnp4e$unin$3@dont-email.me>
 <vfns3o$3r5kq$4@i2pn2.org> <vfoq77$14lcd$5@dont-email.me>
 <vfq6rb$3v4c4$4@i2pn2.org> <vfq7hj$1fqil$3@dont-email.me>
 <c388920e-e951-4b06-a8fc-0eb3e6ea7989@att.net> <vftjeq$26ql1$1@dont-email.me>
 <f19c53f7-2509-4f84-8b1e-c42354aa06b5@att.net> <vfu2vd$29m4j$3@dont-email.me>
 <7def94cc-4a51-4305-8e62-0c5b5f5a6b0a@att.net> <vfve6i$9264$1@solani.org>
 <d1d58306-89c7-4000-9663-ef76f7d0f12b@att.net> <vg0fgh$2ppbe$1@dont-email.me>
 <b7c226f2-91a3-4497-88f2-56df5edaf39c@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 31 Oct 2024 21:18:42 +0100 (CET)
Injection-Info: dont-email.me; posting-host="141caeb41400108587fad7eb5def8ecf";
	logging-data="2989334"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19Wi/uNwdS7txb4xPP/tlzMehpfgSzDgaY="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:vQbFwGBeK8tQgy5DaVYsmt9vaFk=
In-Reply-To: <b7c226f2-91a3-4497-88f2-56df5edaf39c@att.net>
Content-Language: en-US
Bytes: 2905

On 31.10.2024 19:34, Jim Burns wrote:
> On 10/31/2024 1:41 PM, WM wrote:
>> On 31.10.2024 13:22, Jim Burns wrote:
>>> On 10/31/2024 4:13 AM, WM wrote:
> 
>>>>> Neither
>>>>>   ∀n ∈ ℕ: 1/n - 1/(n+1) > 0
>>>>> nor
>>>>>   ∀ᴿx > 0: ∀n ∈ ℕ: ⅟⌈n+⅟x⌉ ∈ ⅟ℕ∩(0,x]
>>>>> is wrong.
>>>>
>>>> But the first formula predicts that
>>>> only single unit fractions
>>>> are existing on the real line.
>>>> How could NUF(x) grow from zero by more than 1?
>>>
>>> Is
>>> ⎛  ∀ᴿx > 0:
>>> ⎜  ∀n ∈ ℕ:
>>> ⎝ ⅟⌈n+⅟x⌉ ∈ ⅟ℕ∩(0,x]
>>> wrong?
>>
>> One of two contradicting formulas must be dropped.
> 
> Which (inside.quantifiers) formula is
> the last which you accept with all prior formulas?

Which one requires that NUF(x) can grow at an x ∈ ℝ by more than 1?

Regards, WM