| Deutsch English Français Italiano |
|
<vg32t6$3b860$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: How many different unit fractions are lessorequal than all unit fractions? (infinitary) Date: Thu, 31 Oct 2024 21:18:43 +0100 Organization: A noiseless patient Spider Lines: 30 Message-ID: <vg0on2$2r78m$1@dont-email.me> References: <vb4rde$22fb4$2@solani.org> <vfe5d5$2olom$1@dont-email.me> <88e6a631-417a-4dd0-9443-a57116dcbd28@att.net> <vfg07k$1chpe$1@solani.org> <7a1e34df-ffee-4d30-ae8c-2af5bcb1d932@att.net> <vfgil3$38pn6$1@dont-email.me> <6a90a2e2-a4fa-4a8d-83e9-2e451fa8dd51@att.net> <vfgqoc$39o4h$2@dont-email.me> <acd4aad3-9447-45a9-bafd-f8b93d781827@att.net> <vfj3v0$1e96h$2@solani.org> <vflnoq$l02$1@news.muc.de> <vfloff$1fpr2$1@solani.org> <vflrt7$h190$3@dont-email.me> <vfnp4e$unin$3@dont-email.me> <vfns3o$3r5kq$4@i2pn2.org> <vfoq77$14lcd$5@dont-email.me> <vfq6rb$3v4c4$4@i2pn2.org> <vfq7hj$1fqil$3@dont-email.me> <c388920e-e951-4b06-a8fc-0eb3e6ea7989@att.net> <vftjeq$26ql1$1@dont-email.me> <f19c53f7-2509-4f84-8b1e-c42354aa06b5@att.net> <vfu2vd$29m4j$3@dont-email.me> <7def94cc-4a51-4305-8e62-0c5b5f5a6b0a@att.net> <vfve6i$9264$1@solani.org> <d1d58306-89c7-4000-9663-ef76f7d0f12b@att.net> <vg0fgh$2ppbe$1@dont-email.me> <b7c226f2-91a3-4497-88f2-56df5edaf39c@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 31 Oct 2024 21:18:42 +0100 (CET) Injection-Info: dont-email.me; posting-host="141caeb41400108587fad7eb5def8ecf"; logging-data="2989334"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19Wi/uNwdS7txb4xPP/tlzMehpfgSzDgaY=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:vQbFwGBeK8tQgy5DaVYsmt9vaFk= In-Reply-To: <b7c226f2-91a3-4497-88f2-56df5edaf39c@att.net> Content-Language: en-US Bytes: 2905 On 31.10.2024 19:34, Jim Burns wrote: > On 10/31/2024 1:41 PM, WM wrote: >> On 31.10.2024 13:22, Jim Burns wrote: >>> On 10/31/2024 4:13 AM, WM wrote: > >>>>> Neither >>>>> ∀n ∈ ℕ: 1/n - 1/(n+1) > 0 >>>>> nor >>>>> ∀ᴿx > 0: ∀n ∈ ℕ: ⅟⌈n+⅟x⌉ ∈ ⅟ℕ∩(0,x] >>>>> is wrong. >>>> >>>> But the first formula predicts that >>>> only single unit fractions >>>> are existing on the real line. >>>> How could NUF(x) grow from zero by more than 1? >>> >>> Is >>> ⎛ ∀ᴿx > 0: >>> ⎜ ∀n ∈ ℕ: >>> ⎝ ⅟⌈n+⅟x⌉ ∈ ⅟ℕ∩(0,x] >>> wrong? >> >> One of two contradicting formulas must be dropped. > > Which (inside.quantifiers) formula is > the last which you accept with all prior formulas? Which one requires that NUF(x) can grow at an x ∈ ℝ by more than 1? Regards, WM