Deutsch English Français Italiano |
<vgidqq$2l5nh$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Thu, 7 Nov 2024 14:03:23 +0100 Organization: A noiseless patient Spider Lines: 23 Message-ID: <vgidqq$2l5nh$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <fe3a6105-8215-4b42-9bbc-686481611ea7@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Thu, 07 Nov 2024 14:03:22 +0100 (CET) Injection-Info: dont-email.me; posting-host="a64f40a529641b77af8a405524a5b42f"; logging-data="2791153"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18Ae7sbqwginyzNnNU3mCgD0DWDa8JRyBU=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:7wQcG/Zf6USkfVKTgTPXwEO96Xw= In-Reply-To: <fe3a6105-8215-4b42-9bbc-686481611ea7@att.net> Content-Language: en-US Bytes: 2285 On 07.11.2024 12:18, Jim Burns wrote: > On 11/7/2024 3:46 AM, WM wrote: > I want to find out from you (WM) > what "not in contact with" means. > > For a point > in the boundary but not in the set, > is it "not in contact with" the set? > Is it "in contact with" the set? It is not in contact with the set. "For every eps" is not a valid criterion because eps depends on what you can define, not on what exists. The endpoint is in contact with the set. > 0 is in the boundary of [-1,0) > Is 0 "in contact with" [-1,0) ? I am not an expert on these things. I would say it is in contact with the set because a point of the set is next to it. The closure of a set is in contact with the set. Regards, WM