Deutsch   English   Français   Italiano  
<vgiv55$2oid6$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Thu, 7 Nov 2024 18:59:02 +0100
Organization: A noiseless patient Spider
Lines: 20
Message-ID: <vgiv55$2oid6$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me>
 <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me>
 <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me>
 <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me>
 <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me>
 <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me>
 <fe3a6105-8215-4b42-9bbc-686481611ea7@att.net> <vgidqq$2l5nh$1@dont-email.me>
 <e60994c4-0bd2-4f89-b9d9-87304e4cfc54@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 07 Nov 2024 18:59:01 +0100 (CET)
Injection-Info: dont-email.me; posting-host="a64f40a529641b77af8a405524a5b42f";
	logging-data="2902438"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX181bpEEMFaj1XmQvMNsLEs/XffWsTgCe0M="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:nDJq997aatKumS366os192G9f04=
Content-Language: en-US
In-Reply-To: <e60994c4-0bd2-4f89-b9d9-87304e4cfc54@att.net>
Bytes: 2267

On 07.11.2024 16:29, Jim Burns wrote:

> ⎛ The boundary of a set S holds
> ⎜ those points x′ such that
> ⎜ each interval [x,x″] with
> ⎜ x′ in its interior, x < x′ <  x″,
> ⎝ holds points in S and points not.in S
> 
Do you think you need the boundary in my last example?

When we cover the real axis by intervals
--------_1_--------_2_--------_3_--------_4_--------_5_--------_...
J(n) = [n - √2/10, n + √2/10]
and shuffle them in a clever way, then all rational numbers are 
midpoints of intervals and no irrational number is outside of all intervals.
Do you believe this???

Regards, WM