Deutsch English Français Italiano |
<vgiv55$2oid6$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Thu, 7 Nov 2024 18:59:02 +0100 Organization: A noiseless patient Spider Lines: 20 Message-ID: <vgiv55$2oid6$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <fe3a6105-8215-4b42-9bbc-686481611ea7@att.net> <vgidqq$2l5nh$1@dont-email.me> <e60994c4-0bd2-4f89-b9d9-87304e4cfc54@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 07 Nov 2024 18:59:01 +0100 (CET) Injection-Info: dont-email.me; posting-host="a64f40a529641b77af8a405524a5b42f"; logging-data="2902438"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX181bpEEMFaj1XmQvMNsLEs/XffWsTgCe0M=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:nDJq997aatKumS366os192G9f04= Content-Language: en-US In-Reply-To: <e60994c4-0bd2-4f89-b9d9-87304e4cfc54@att.net> Bytes: 2267 On 07.11.2024 16:29, Jim Burns wrote: > ⎛ The boundary of a set S holds > ⎜ those points x′ such that > ⎜ each interval [x,x″] with > ⎜ x′ in its interior, x < x′ < x″, > ⎝ holds points in S and points not.in S > Do you think you need the boundary in my last example? When we cover the real axis by intervals --------_1_--------_2_--------_3_--------_4_--------_5_--------_... J(n) = [n - √2/10, n + √2/10] and shuffle them in a clever way, then all rational numbers are midpoints of intervals and no irrational number is outside of all intervals. Do you believe this??? Regards, WM