Deutsch   English   Français   Italiano  
<vgj4lk$2ova9$3@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Thu, 7 Nov 2024 20:33:09 +0100
Organization: A noiseless patient Spider
Lines: 23
Message-ID: <vgj4lk$2ova9$3@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me>
 <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me>
 <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me>
 <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me>
 <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me>
 <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me>
 <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 07 Nov 2024 20:33:08 +0100 (CET)
Injection-Info: dont-email.me; posting-host="3a2cc1e6b8a4bb2737b4ec8d14de9e4e";
	logging-data="2915657"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/AagHomR3B1KRODKjdqDfy5YEH9SEHfrY="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:AWpoeJNcLQc/SqosIFA7e58kHpk=
In-Reply-To: <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net>
Content-Language: en-US
Bytes: 2244


On 07.11.2024 20:06, Jim Burns wrote:
 > On 11/7/2024 3:46 AM, WM wrote:

 >> That means by clever reordering them
 >> you can cover the whole positive axis
 >> except "boundaries".
 >
 > Yes.
 > In that clever re.ordering, not scrunched together,
 > the whole positive axis
 > is in the ε.cover or
 > in the boundary of the ε.cover.

It is impossible however to cover the real axis (even many times) by the 
intervals
  J(n) = [n - 1/10, n + 1/10].
No boundaries are involved because every interval of length 1/5 contains 
infinitely many rationals and therefore is essentially covered by 
infinitely many intervals of length 1/5 - if Cantor is right.

Regards, WM