Deutsch   English   Français   Italiano  
<vgni1o$3osmc$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.nobody.at!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Sat, 9 Nov 2024 12:46:01 +0100
Organization: A noiseless patient Spider
Lines: 29
Message-ID: <vgni1o$3osmc$2@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me>
 <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me>
 <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me>
 <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me>
 <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me>
 <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me>
 <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me>
 <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org>
 <d780ead415ff3a62ccd9b606bcd743fea3d8002c@i2pn2.org>
 <vglf32$396r8$1@dont-email.me>
 <1cd9f8e7c9120e79cfb3db241fba9c1d653f3ad1@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Sat, 09 Nov 2024 12:46:01 +0100 (CET)
Injection-Info: dont-email.me; posting-host="61c0098f25fee3c5f34d41f8e7412679";
	logging-data="3961548"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+hNk6Ov/vLbWhwwqQ7QIgWhVTTqh5zQsw="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:eEFArZCtzqbZSsNSJ5WmZLnhXfI=
In-Reply-To: <1cd9f8e7c9120e79cfb3db241fba9c1d653f3ad1@i2pn2.org>
Content-Language: en-US
Bytes: 2825

On 08.11.2024 18:05, Richard Damon wrote:
 > On 11/8/24 11:43 AM, WM wrote:

 >> The infinite of the real axis is a big supply but an as big drain.
 >
 > What "drain", the numbers exist.

But their density is everywhere the same.
 >
 >> I take it as evident that intervals of the measure 1/5 of the positive
 >> real axis will not, by any shuffling, cover the real axis completely,
 >> let alone infinitely often. I think who believes this is a deplorable
 >> fanatic if not a fool.

 > Since 1/5 of infinity isn't a finite measure, you can't use finite logic
 > to handle them.

Since 1/5 is a finite number and for every finite set the covering is 
1/5, the limit is 1/5 too.
 >
 > You are just proving your use of broken logic.

Chuckle. Everybody who believes that the intervals
I(n) = [n - 1/10, n + 1/10]
0--------_1_--------_2_--------_3_--------_4_--------_5_--------_...
could grow in length or number to cover the whole real axis is a fool or 
worse.

Regards, WM