Deutsch English Français Italiano |
<vgni1o$3osmc$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.nobody.at!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Sat, 9 Nov 2024 12:46:01 +0100 Organization: A noiseless patient Spider Lines: 29 Message-ID: <vgni1o$3osmc$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <d780ead415ff3a62ccd9b606bcd743fea3d8002c@i2pn2.org> <vglf32$396r8$1@dont-email.me> <1cd9f8e7c9120e79cfb3db241fba9c1d653f3ad1@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Sat, 09 Nov 2024 12:46:01 +0100 (CET) Injection-Info: dont-email.me; posting-host="61c0098f25fee3c5f34d41f8e7412679"; logging-data="3961548"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+hNk6Ov/vLbWhwwqQ7QIgWhVTTqh5zQsw=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:eEFArZCtzqbZSsNSJ5WmZLnhXfI= In-Reply-To: <1cd9f8e7c9120e79cfb3db241fba9c1d653f3ad1@i2pn2.org> Content-Language: en-US Bytes: 2825 On 08.11.2024 18:05, Richard Damon wrote: > On 11/8/24 11:43 AM, WM wrote: >> The infinite of the real axis is a big supply but an as big drain. > > What "drain", the numbers exist. But their density is everywhere the same. > >> I take it as evident that intervals of the measure 1/5 of the positive >> real axis will not, by any shuffling, cover the real axis completely, >> let alone infinitely often. I think who believes this is a deplorable >> fanatic if not a fool. > Since 1/5 of infinity isn't a finite measure, you can't use finite logic > to handle them. Since 1/5 is a finite number and for every finite set the covering is 1/5, the limit is 1/5 too. > > You are just proving your use of broken logic. Chuckle. Everybody who believes that the intervals I(n) = [n - 1/10, n + 1/10] 0--------_1_--------_2_--------_3_--------_4_--------_5_--------_... could grow in length or number to cover the whole real axis is a fool or worse. Regards, WM