Deutsch   English   Français   Italiano  
<vgol5o$3vr0c$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Sat, 9 Nov 2024 13:45:28 -0800
Organization: A noiseless patient Spider
Lines: 46
Message-ID: <vgol5o$3vr0c$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me>
 <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me>
 <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me>
 <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me>
 <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me>
 <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me>
 <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me>
 <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org>
 <d780ead415ff3a62ccd9b606bcd743fea3d8002c@i2pn2.org>
 <vglf32$396r8$1@dont-email.me>
 <521668acd2ed6184f2f2e36f67fdb1bc3a997524@i2pn2.org>
 <vglslt$3bl8n$1@dont-email.me> <vglso1$3bl8n$2@dont-email.me>
 <vgokv7$n50i$1@solani.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sat, 09 Nov 2024 22:45:28 +0100 (CET)
Injection-Info: dont-email.me; posting-host="42a0198f79e20e1c99d0f1a5c57bc090";
	logging-data="4189196"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18T33N7+1ztAkLGbzVN44Ychu//IQjt//k="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:Wa4l4Q8eQ3NQ990l9uvEBumhH28=
Content-Language: en-US
In-Reply-To: <vgokv7$n50i$1@solani.org>
Bytes: 3743

On 11/9/2024 1:42 PM, WM wrote:
> On 08.11.2024 21:36, Moebius wrote:
>> Am 08.11.2024 um 21:35 schrieb Moebius:
> 
>>>> What is the measure you are using and what does it give for the real
>>>> axis?
>>>
>>> Ob Du es nochmal schaffst, auf diesen saudummen Scheißdreck NICHT zu 
>>> antworten?
>>
>> Ich kann es jedenfalls nicht mehr sehen/lesen.
> 
> Kein Wunder, weil es Deinen starken Glauben erschüttert.
> 
> Use the intervals I(n) = [n - sqrt(2)/2^n, n + sqrt(2)/2^n]. Since n and 
> q_n can be in bijection, these intervals are sufficient to cover all 
> q_n. That means by clever reordering them you can cover the whole 
> positive axis.
> 
> The measure of all intervals J(n) = [n - √2/10, n + √2/10] is smaller 
> than 3. If no irrationals are outside, then nothing is outside, then the 
> measure of the real axis is smaller than 3. That is wrong. Therefore 
> there are irrationals outside. That implies that rationals are outside. 
> That implies that Cantor's above sequence does not contain all rationals.
> 
> And an even more suggestive approximation:
> Replace the I(n) by intervals J(n) = [n - 1/10, n + 1/10].
> These intervals (without splitting or modifying them) can be reordered, 
> to cover the whole positive axis except boundaries.
> 
> But note that Cantor's bijection between naturals and rationals does not 
> insert any non-natural number into ℕ. It confirms only that both sets 
> are very large. 

Cantor pairing can handle any natural number and convert into a unique 
pair. Not very large... Infinite indeed. Cantor pairing can handle any 
natural number.



Therefore also the above sequence of intervals keeps the
> same intervals and the same reality. And the same density 1/5 for every 
> finite interval and therefore also in the limit.
> 
> Regards, WM