Deutsch English Français Italiano |
<vgol5o$3vr0c$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Sat, 9 Nov 2024 13:45:28 -0800 Organization: A noiseless patient Spider Lines: 46 Message-ID: <vgol5o$3vr0c$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <d780ead415ff3a62ccd9b606bcd743fea3d8002c@i2pn2.org> <vglf32$396r8$1@dont-email.me> <521668acd2ed6184f2f2e36f67fdb1bc3a997524@i2pn2.org> <vglslt$3bl8n$1@dont-email.me> <vglso1$3bl8n$2@dont-email.me> <vgokv7$n50i$1@solani.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sat, 09 Nov 2024 22:45:28 +0100 (CET) Injection-Info: dont-email.me; posting-host="42a0198f79e20e1c99d0f1a5c57bc090"; logging-data="4189196"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18T33N7+1ztAkLGbzVN44Ychu//IQjt//k=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:Wa4l4Q8eQ3NQ990l9uvEBumhH28= Content-Language: en-US In-Reply-To: <vgokv7$n50i$1@solani.org> Bytes: 3743 On 11/9/2024 1:42 PM, WM wrote: > On 08.11.2024 21:36, Moebius wrote: >> Am 08.11.2024 um 21:35 schrieb Moebius: > >>>> What is the measure you are using and what does it give for the real >>>> axis? >>> >>> Ob Du es nochmal schaffst, auf diesen saudummen Scheißdreck NICHT zu >>> antworten? >> >> Ich kann es jedenfalls nicht mehr sehen/lesen. > > Kein Wunder, weil es Deinen starken Glauben erschüttert. > > Use the intervals I(n) = [n - sqrt(2)/2^n, n + sqrt(2)/2^n]. Since n and > q_n can be in bijection, these intervals are sufficient to cover all > q_n. That means by clever reordering them you can cover the whole > positive axis. > > The measure of all intervals J(n) = [n - √2/10, n + √2/10] is smaller > than 3. If no irrationals are outside, then nothing is outside, then the > measure of the real axis is smaller than 3. That is wrong. Therefore > there are irrationals outside. That implies that rationals are outside. > That implies that Cantor's above sequence does not contain all rationals. > > And an even more suggestive approximation: > Replace the I(n) by intervals J(n) = [n - 1/10, n + 1/10]. > These intervals (without splitting or modifying them) can be reordered, > to cover the whole positive axis except boundaries. > > But note that Cantor's bijection between naturals and rationals does not > insert any non-natural number into ℕ. It confirms only that both sets > are very large. Cantor pairing can handle any natural number and convert into a unique pair. Not very large... Infinite indeed. Cantor pairing can handle any natural number. Therefore also the above sequence of intervals keeps the > same intervals and the same reality. And the same density 1/5 for every > finite interval and therefore also in the limit. > > Regards, WM