Deutsch English Français Italiano |
<vgom45$3vvgt$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Sat, 9 Nov 2024 23:01:41 +0100 Organization: A noiseless patient Spider Lines: 9 Message-ID: <vgom45$3vvgt$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <d780ead415ff3a62ccd9b606bcd743fea3d8002c@i2pn2.org> <vglf32$396r8$1@dont-email.me> <521668acd2ed6184f2f2e36f67fdb1bc3a997524@i2pn2.org> <vglslt$3bl8n$1@dont-email.me> <vglso1$3bl8n$2@dont-email.me> <vgokv7$n50i$1@solani.org> <vgol5o$3vr0c$1@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sat, 09 Nov 2024 23:01:42 +0100 (CET) Injection-Info: dont-email.me; posting-host="15d0ddfad16d1d2e7cfb48b10b874ab7"; logging-data="4193821"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/7nGzgYgd6zNJygplas4bC" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:4LsDTJa1LiiUR3pgjqyZLzpEG7Y= In-Reply-To: <vgol5o$3vr0c$1@dont-email.me> Content-Language: de-DE Bytes: 2232 Am 09.11.2024 um 22:45 schrieb Chris M. Thomasson: > On 11/9/2024 1:42 PM, WM wrote: >> But note that Cantor's bijection between naturals and rationals does >> not insert any non-natural number into ℕ. Huh?! >> It confirms only that [both] sets [have the same size, actually aleph_0].