Deutsch English Français Italiano |
<vgq1cm$b5vj$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Mikko <mikko.levanto@iki.fi> Newsgroups: sci.logic Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Sun, 10 Nov 2024 12:20:06 +0200 Organization: - Lines: 30 Message-ID: <vgq1cm$b5vj$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vga5mb$st52$1@dont-email.me> <vga7qi$talf$1@dont-email.me> <03b90d6c-fff1-411d-9dec-1c5cc7058480@tha.de> <vgb1fj$128tl$1@dont-email.me> <vgb2r6$11df6$3@dont-email.me> <vgcs35$1fq8n$1@dont-email.me> <vgfepg$22hhn$1@dont-email.me> <vgg0ic$25pcn$1@dont-email.me> <vggai3$25spe$8@dont-email.me> <vgi0t7$2ji2i$1@dont-email.me> <vgiet5$2l5ni$1@dont-email.me> <vgl2hj$3794c$1@dont-email.me> <vgleau$bi0i$2@solani.org> <vgnq3i$3qgfe$1@dont-email.me> <vgoka6$3vg2p$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 10 Nov 2024 11:20:06 +0100 (CET) Injection-Info: dont-email.me; posting-host="aa6135c12195030876f9317ea3566320"; logging-data="366579"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+YTMqVEsCkvnooOTojfenb" User-Agent: Unison/2.2 Cancel-Lock: sha1:iq3rL/TzqBUUhxHGq2kGH8y9Lt8= Bytes: 2320 On 2024-11-09 21:30:47 +0000, WM said: > On 09.11.2024 15:03, Mikko wrote: >> On 2024-11-08 16:30:23 +0000, WM said: > >>> >>> If Cantors enumeration of the rationals is complete, then all rationals >>> are in the sequence 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, >>> 1/5, 2/4, 3/3, 4/2, 5/1, 1/6, 2/5, 3/4, 4/3, 5/2, 6/1, ... and none is >>> outside. >> >> All positive rationals quite obviously are in the sequence. Non-positive >> rationals are not. >> >>> Therefore also irrational numbers cannot be there. >> >> That is equally obvious. >> >>> Of course this is wrong. >> >> You may call it wrong but that's the way they are. > > The measure of all intervals J(n) = [n - √2/10, n + √2/10] is smaller than 3. Maybe, maybe not, depending on what is all n. If all n is all reals then the measure of their union is infinite. -- Mikko