Deutsch English Français Italiano |
<vgr5fo$i3h7$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Sun, 10 Nov 2024 12:36:09 -0800 Organization: A noiseless patient Spider Lines: 26 Message-ID: <vgr5fo$i3h7$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me> <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 10 Nov 2024 21:36:09 +0100 (CET) Injection-Info: dont-email.me; posting-host="2f6d4651da9b9d481a89da3e4ea06f77"; logging-data="593447"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18vQN0s9IVTbE85WXOaSntPcJP+GcQ5xJE=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:Mvy+Z5fAUSS1huIjb84SLLoMAhs= In-Reply-To: <vgpupb$abrr$2@dont-email.me> Content-Language: en-US Bytes: 2667 On 11/10/2024 1:35 AM, WM wrote: > On 10.11.2024 00:27, Jim Burns wrote: >> On 11/9/2024 6:45 AM, WM wrote: > >>> Everybody who believes that the intervals >>> I(n) = [n - 1/10, n + 1/10] >>> could grow in length or number >>> to cover the whole real axis >>> is a fool or worse. >> >> Our sets do not change. >> >> The set >> {[n-⅒,n+⅒]: n∈ℕ⁺} >> with the midpoints at >> ⟨ 1, 2, 3, 4, 5, ... ⟩ >> does not _change_ to the set >> {[iₙ/jₙ-⅒,iₙ/jₙ+⅒]: n∈ℕ⁺} >> with the midpoints at >> ⟨ 1/1, 1/2, 2/1, 1/3, 2/2, ... ⟩ > > It cannot do so because the reality of the rationals is much larger than > the reality of the naturals.[...] Cantor pairing can create a unique pair of natural numbers from a single natural number. Why do think of rationals at all!? Sigh.