Deutsch English Franรงais Italiano |
<vgsg04$t7fk$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Mon, 11 Nov 2024 09:41:41 +0100 Organization: A noiseless patient Spider Lines: 82 Message-ID: <vgsg04$t7fk$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me> <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me> <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 11 Nov 2024 09:41:40 +0100 (CET) Injection-Info: dont-email.me; posting-host="94369dc94494005a4a8a026b182050ff"; logging-data="957940"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19xai31k85kiRN3iVCQUzf2+SWCG4fDHy8=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:xd9Tihrc0J/2L4rSjlxVZjjkyjw= Content-Language: en-US In-Reply-To: <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> Bytes: 4483 On 10.11.2024 18:49, Jim Burns wrote: > On 11/10/2024 4:35 AM, WM wrote: > The set > {3,4,5} > does not _change_ to the set > {6,7,8} > because > our sets do not change. But points or intervals in geometry can be translated on the real axis. > Our sets do not change. But points or intervals in geometry can be translated on the real axis. > >>> >>> In the first case, with the not.changing sets, >>> a finite ๐๐ฒ๐พ๐๐ฒ๐ป๐ฐ๐ฒ of ๐ฐ๐น๐ฎ๐ถ๐บ๐ which >>> has only true.or.not.first.false ๐ฐ๐น๐ฎ๐ถ๐บ๐ >>> has only true ๐ฐ๐น๐ฎ๐ถ๐บ๐. >> >> But it > > "It" refers to who or what? To that finite ๐๐ฒ๐พ๐๐ฒ๐ป๐ฐ๐ฒ. >> But it will never complete >> an infinite set of claims. > > We do not need an infinite ๐๐ฒ๐พ๐๐ฒ๐ป๐ฐ๐ฒ of ๐ฐ๐น๐ฎ๐ถ๐บ๐ completed. > We do not want an infinite ๐๐ฒ๐พ๐๐ฒ๐ป๐ฐ๐ฒ of ๐ฐ๐น๐ฎ๐ถ๐บ๐ completed. But you claim that _all_ fractions are in bijection with all natural numbers, don't you? >> It will forever remain in the status nascendi. >> Therefore >> irrelevant for actual or completed infinity. > > A finite ๐๐ฒ๐พ๐๐ฒ๐ป๐ฐ๐ฒ of ๐ฐ๐น๐ฎ๐ถ๐บ๐, each of which > is true.or.not.first.false, > will forever remain > a finite ๐๐ฒ๐พ๐๐ฒ๐ป๐ฐ๐ฒ of ๐ฐ๐น๐ฎ๐ถ๐บ๐, each of which > is true.or.not.first.false. Therefore such a sequence does not entitle you to claim infinite mappings. > >>> Infinite sets can correspond to >>> other infinite sets which, >>> without much thought about infinity, >>> would seem to be a different "size". >> >> But they cannot become such sets. > > Our sets do not change. My intervals I(n) = [n - 1/10, n + 1/10] must be translated to all the midpoints 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, 2/4, 3/3, 4/2, 5/1, 1/6, 2/5, 3/4, 4/3, 5/2, 6/1, ... if you want to contradict my claim. > >> But they cannot be completely transformed > < into each other. > > Our sets do not change. But intervals can be shifted. > Consider again the two sets of midpoints > โจ 1, 2, 3, 4, 5, ... โฉ and > โจ 1/1, 1/2, 2/1, 1/3, 2/2, ... โฉ > > They both _are_ > And their points correspond > by i/j โฆ n = (i+j-1)(i+j-2)/2+i The first few terms do correspond or can be made c orresponding. That can be proven by translating the due intervals. But the full claim is nonsense because it is impossible to satisfy. Regards, WM