Deutsch English Français Italiano |
<vgsq2v$v5t1$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.logic Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 11 Nov 2024 12:33:52 +0100 Organization: A noiseless patient Spider Lines: 29 Message-ID: <vgsq2v$v5t1$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vga5mb$st52$1@dont-email.me> <vga7qi$talf$1@dont-email.me> <03b90d6c-fff1-411d-9dec-1c5cc7058480@tha.de> <vgb1fj$128tl$1@dont-email.me> <vgb2r6$11df6$3@dont-email.me> <vgcs35$1fq8n$1@dont-email.me> <vgfepg$22hhn$1@dont-email.me> <vgg0ic$25pcn$1@dont-email.me> <vggai3$25spe$8@dont-email.me> <vgi0t7$2ji2i$1@dont-email.me> <vgiet5$2l5ni$1@dont-email.me> <vgl2hj$3794c$1@dont-email.me> <vgleau$bi0i$2@solani.org> <vgnq3i$3qgfe$1@dont-email.me> <vgoka6$3vg2p$1@dont-email.me> <vgq1cm$b5vj$1@dont-email.me> <vgq3ca$beif$1@dont-email.me> <vgsp1c$v1ss$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 11 Nov 2024 12:33:52 +0100 (CET) Injection-Info: dont-email.me; posting-host="94369dc94494005a4a8a026b182050ff"; logging-data="1021857"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19v6VB+id2chJOUYUbEScfBeb89pqjrPeE=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:MwKgVrgqJ0pAg/oeZqpzNhWB1RI= In-Reply-To: <vgsp1c$v1ss$1@dont-email.me> Content-Language: en-US Bytes: 2563 On 11.11.2024 12:15, Mikko wrote: > On 2024-11-10 10:54:02 +0000, WM said: > >>>> >>>> The measure of all intervals J(n) = [n - √2/10, n + √2/10] is >>>> smaller than 3. >>> >>> Maybe, maybe not, depending on what is all n. >> >> It is, as usual, all natural numbers. > > The measure of the interval J(n) is √2/5, which is roghly 0,28. Agreed, I said smaller than 3. > The measure of the set of all those intervals is infinite. The density or relative measure is √2/5. By shifting intervals this density cannot grow. Therefore the intervals cannot cover the real axis, let alone infinitely often. > Between the intervals J(n) and (Jn+1) there are infinitely many rational > and irrational numbers but no hatural numbers. > Therefore infinitely many natural numbers must become centres of intervals, if Cantor was right. But that is impossible. Regards, WM