Deutsch   English   Français   Italiano  
<vgsqnj$unbg$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.logic
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Mon, 11 Nov 2024 12:44:51 +0100
Organization: A noiseless patient Spider
Lines: 17
Message-ID: <vgsqnj$unbg$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vga5mb$st52$1@dont-email.me>
 <vga7qi$talf$1@dont-email.me> <03b90d6c-fff1-411d-9dec-1c5cc7058480@tha.de>
 <vgb1fj$128tl$1@dont-email.me> <vgb2r6$11df6$3@dont-email.me>
 <vgcs35$1fq8n$1@dont-email.me> <vgfepg$22hhn$1@dont-email.me>
 <vgg0ic$25pcn$1@dont-email.me> <vggai3$25spe$8@dont-email.me>
 <vgi0t7$2ji2i$1@dont-email.me> <vgiet5$2l5ni$1@dont-email.me>
 <vgl2hj$3794c$1@dont-email.me> <vgleau$bi0i$2@solani.org>
 <vgnq3i$3qgfe$1@dont-email.me> <vgoka6$3vg2p$1@dont-email.me>
 <vgq1cm$b5vj$1@dont-email.me> <vgq3ca$beif$1@dont-email.me>
 <vgsp1c$v1ss$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 11 Nov 2024 12:44:52 +0100 (CET)
Injection-Info: dont-email.me; posting-host="94369dc94494005a4a8a026b182050ff";
	logging-data="1006960"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/ouVSDCkCQX0SZIn2Nj54CS8VsG+lS9xU="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:jMKGQwgKGDr9dGrW9vaqzB1iB4g=
In-Reply-To: <vgsp1c$v1ss$1@dont-email.me>
Content-Language: en-US
Bytes: 2278

On 11.11.2024 12:15, Mikko wrote:
> On 2024-11-10 10:54:02 +0000, WM said:
> 
> The measure of the set of all those intervals is infinite.

The density or relative measure over the complete real axis is √2/5. By 
shifting intervals this density cannot grow. Therefore the intervals 
cannot cover the real axis, let alone infinitely often.

> Between the intervals J(n) and (Jn+1) there are infinitely many rational
> and irrational numbers but no hatural numbers.
>
Therefore infinitely many natural numbers must become centres of 
intervals, if Cantor was right. But that is impossible.

Regards, WM