Deutsch English Franรงais Italiano |
<vgtpmo$153hf$6@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Mon, 11 Nov 2024 21:33:28 +0100 Organization: A noiseless patient Spider Lines: 37 Message-ID: <vgtpmo$153hf$6@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me> <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me> <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> <vgsg04$t7fk$1@dont-email.me> <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 11 Nov 2024 21:33:29 +0100 (CET) Injection-Info: dont-email.me; posting-host="34c5918a72af036895508b12e821e3eb"; logging-data="1216047"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19d7aomxMBCwdiB/pt2ySojVJTz2qBiHnA=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:0/vS2YoR/JUQLvI5YshC2jP1KFg= Content-Language: en-US In-Reply-To: <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> Bytes: 3101 On 11.11.2024 19:23, Jim Burns wrote: > On 11/11/2024 3:41 AM, WM wrote: >>>> But it will never complete >>>> an infinite set of claims. >>> >>> We do not need an infinite ๐๐ฒ๐พ๐๐ฒ๐ป๐ฐ๐ฒ of ๐ฐ๐น๐ฎ๐ถ๐บ๐ completed. >>> We do not want an infinite ๐๐ฒ๐พ๐๐ฒ๐ป๐ฐ๐ฒ of ๐ฐ๐น๐ฎ๐ถ๐บ๐ completed. >> >> But you claim that >> _all_ fractions are in bijection with >> all natural numbers, >> don't you? > > Yes, I claim that. For that claim you need an infinite set of claims. > This is one ๐ฐ๐น๐ฎ๐ถ๐บ: > โ All fractions are in bijection with > โ all natural numbers. It is wrong. >> My intervals I(n) = [n - 1/10, n + 1/10] >> must be translated to all the midpoints >> 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, >> 2/4, 3/3, 4/2, 5/1, 1/6, 2/5, 3/4, 4/3, 5/2, 6/1, ... >> if you want to contradict my claim. > > Your ๐ฐ๐น๐ฎ๐ถ๐บ๐ start with "Sets change". No, I claim that intervals can be translated. (The set of intervals remains constant in size and multitude.) For every finite subset this is possible. Regards, WM