Deutsch   English   Français   Italiano  
<vgvm6h$1k8co$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Mikko <mikko.levanto@iki.fi>
Newsgroups: sci.logic
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
Date: Tue, 12 Nov 2024 15:45:53 +0200
Organization: -
Lines: 34
Message-ID: <vgvm6h$1k8co$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vga5mb$st52$1@dont-email.me> <vga7qi$talf$1@dont-email.me> <03b90d6c-fff1-411d-9dec-1c5cc7058480@tha.de> <vgb1fj$128tl$1@dont-email.me> <vgb2r6$11df6$3@dont-email.me> <vgcs35$1fq8n$1@dont-email.me> <vgfepg$22hhn$1@dont-email.me> <vgg0ic$25pcn$1@dont-email.me> <vggai3$25spe$8@dont-email.me> <vgi0t7$2ji2i$1@dont-email.me> <vgiet5$2l5ni$1@dont-email.me> <vgl2hj$3794c$1@dont-email.me> <vgleau$bi0i$2@solani.org> <vgnq3i$3qgfe$1@dont-email.me> <vgoka6$3vg2p$1@dont-email.me> <vgq1cm$b5vj$1@dont-email.me> <vgq3ca$beif$1@dont-email.me> <vgsp1c$v1ss$1@dont-email.me> <vgsq2v$v5t1$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 12 Nov 2024 14:45:54 +0100 (CET)
Injection-Info: dont-email.me; posting-host="a86eeb15695684d31125944a4ec4c92d";
	logging-data="1712536"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+Koo12fyc7IG/nNtYEcIX6"
User-Agent: Unison/2.2
Cancel-Lock: sha1:tqQZj49yI/iEd9jVdeCO7nrGB/8=
Bytes: 2562

On 2024-11-11 11:33:52 +0000, WM said:

> On 11.11.2024 12:15, Mikko wrote:
>> On 2024-11-10 10:54:02 +0000, WM said:
>> 
> 
>>>>> 
>>>>> The measure of all intervals J(n) = [n - √2/10, n + √2/10] is smaller than 3.
>>>> 
>>>> Maybe, maybe not, depending on what is all n.
>>> 
>>> It is, as usual, all natural numbers.
>> 
>> The measure of the interval J(n) is √2/5, which is roghly 0,28.
> 
> Agreed, I said smaller than 3.
> 
>> The measure of the set of all those intervals is infinite.
> 
> The density or relative measure is √2/5. By shifting intervals this 
> density cannot grow. Therefore the intervals cannot cover the real 
> axis, let alone infinitely often.
> 
>> Between the intervals J(n) and (Jn+1) there are infinitely many rational
>> and irrational numbers but no hatural numbers.

> Therefore infinitely many natural numbers must become centres of 
> intervals, if Cantor was right. But that is impossible.

Where did Cantor say otherwise?

-- 
Mikko