Deutsch   English   Français   Italiano  
<vgvoq0$1kc5f$4@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Tue, 12 Nov 2024 15:30:25 +0100
Organization: A noiseless patient Spider
Lines: 18
Message-ID: <vgvoq0$1kc5f$4@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vgb0ep$11df5$4@dont-email.me>
 <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me>
 <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me>
 <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me>
 <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me>
 <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me>
 <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org>
 <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me>
 <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me>
 <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> <vgsg04$t7fk$1@dont-email.me>
 <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> <vgtpmo$153hf$6@dont-email.me>
 <vgtu6h$16i4q$1@dont-email.me> <vgv5b4$1gh9b$2@dont-email.me>
 <daced9caf42d63931e6eb22b5d718542f615dc30@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Tue, 12 Nov 2024 15:30:25 +0100 (CET)
Injection-Info: dont-email.me; posting-host="58c87137bb70e24653c8534960defd84";
	logging-data="1716399"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19E3H6HshC+ZVq7tk9pIAMloTMfLbqS3tE="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:5zUQa0JBI1uxdMUjMFXFblDoS6I=
Content-Language: en-US
In-Reply-To: <daced9caf42d63931e6eb22b5d718542f615dc30@i2pn2.org>
Bytes: 2680

On 12.11.2024 12:23, joes wrote:
> Am Tue, 12 Nov 2024 09:58:12 +0100 schrieb WM:

>> Therefore I prove it. The set of intervals I(n) = [n - 1/10, n + 1/10]
>> cannot cover all fractions on the real axis.
> It absolutely does, for all fractions n.

The claim however is for all fractions q, most of which are different 
from n.

The density is provably 1/5 for all finite initial segments of the real 
line. The sequence 1/5, 1/5, 1/5, ... has the limit 1/5. By translating 
intervals neither their size nor their multitude changes. Therefore 
never more than 1/5 of the real axis is covered. Most rationals remain 
naked.

Regards, WM