Deutsch   English   Français   Italiano  
<vh00jj$1m6co$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Tue, 12 Nov 2024 17:43:32 +0100
Organization: A noiseless patient Spider
Lines: 35
Message-ID: <vh00jj$1m6co$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vgab11$st52$3@dont-email.me>
 <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me>
 <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me>
 <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me>
 <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me>
 <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me>
 <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me>
 <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org>
 <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me>
 <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me>
 <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> <vgsg04$t7fk$1@dont-email.me>
 <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> <vgtpmo$153hf$6@dont-email.me>
 <d17f7542-986e-4897-89b4-dccaf11d5311@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 12 Nov 2024 17:43:32 +0100 (CET)
Injection-Info: dont-email.me; posting-host="58c87137bb70e24653c8534960defd84";
	logging-data="1776024"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18FOauL3LizbYR2+ceaecGNTI+Bpwn7rT0="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:cFfN2TXLYPk53SqcEPhUER6m7Ic=
In-Reply-To: <d17f7542-986e-4897-89b4-dccaf11d5311@att.net>
Content-Language: en-US
Bytes: 3134

On 12.11.2024 16:58, Jim Burns wrote:
> On 11/11/2024 3:33 PM, WM wrote:
>> On 11.11.2024 19:23, Jim Burns wrote:
>>> On 11/11/2024 3:41 AM, WM wrote:
> 
>>>> My intervals I(n) = [n - 1/10, n + 1/10]
>>>> must be translated to all the midpoints
>>>> 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5,
>>>> 2/4, 3/3, 4/2, 5/1, 1/6, 2/5, 3/4, 4/3, 5/2, 6/1, ...
>>>> if you want to contradict my claim.
>>>
>>> Your 𝗰𝗹𝗮𝗶𝗺𝘀 start with "Sets change".
>>
>> No, I claim that intervals can be translated.
> 
> By which, you mean that translation changes intervals.

No, the intervals remain constant in size and multitude.

>> (The set of intervals remains constant
>> in size and multitude.)
> 
> The set of intervals remains constant. Absolutely.
> Sets do not change.
> Intervals do not change.
> Mathematical objects do not change.

Therefore the intervals covering all naturals cannot cover more. But the 
rationals are more in the sense that they include all naturals and 1/2. 
By your argument Cantor has been falsified.

Regards, WM

Regards, WM