Deutsch English Français Italiano |
<vh00jj$1m6co$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Tue, 12 Nov 2024 17:43:32 +0100 Organization: A noiseless patient Spider Lines: 35 Message-ID: <vh00jj$1m6co$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vgab11$st52$3@dont-email.me> <ecffc7c0-05a2-42df-bf4c-8ae3c2f809d6@att.net> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me> <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me> <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> <vgsg04$t7fk$1@dont-email.me> <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> <vgtpmo$153hf$6@dont-email.me> <d17f7542-986e-4897-89b4-dccaf11d5311@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 12 Nov 2024 17:43:32 +0100 (CET) Injection-Info: dont-email.me; posting-host="58c87137bb70e24653c8534960defd84"; logging-data="1776024"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18FOauL3LizbYR2+ceaecGNTI+Bpwn7rT0=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:cFfN2TXLYPk53SqcEPhUER6m7Ic= In-Reply-To: <d17f7542-986e-4897-89b4-dccaf11d5311@att.net> Content-Language: en-US Bytes: 3134 On 12.11.2024 16:58, Jim Burns wrote: > On 11/11/2024 3:33 PM, WM wrote: >> On 11.11.2024 19:23, Jim Burns wrote: >>> On 11/11/2024 3:41 AM, WM wrote: > >>>> My intervals I(n) = [n - 1/10, n + 1/10] >>>> must be translated to all the midpoints >>>> 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5, >>>> 2/4, 3/3, 4/2, 5/1, 1/6, 2/5, 3/4, 4/3, 5/2, 6/1, ... >>>> if you want to contradict my claim. >>> >>> Your 𝗰𝗹𝗮𝗶𝗺𝘀 start with "Sets change". >> >> No, I claim that intervals can be translated. > > By which, you mean that translation changes intervals. No, the intervals remain constant in size and multitude. >> (The set of intervals remains constant >> in size and multitude.) > > The set of intervals remains constant. Absolutely. > Sets do not change. > Intervals do not change. > Mathematical objects do not change. Therefore the intervals covering all naturals cannot cover more. But the rationals are more in the sense that they include all naturals and 1/2. By your argument Cantor has been falsified. Regards, WM Regards, WM