Deutsch English Français Italiano |
<vh0hta$1pmql$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Tue, 12 Nov 2024 22:38:50 +0100 Organization: A noiseless patient Spider Lines: 39 Message-ID: <vh0hta$1pmql$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vgb0ep$11df5$4@dont-email.me> <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me> <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me> <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me> <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me> <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me> <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me> <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> <vgsg04$t7fk$1@dont-email.me> <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> <vgtpmo$153hf$6@dont-email.me> <d17f7542-986e-4897-89b4-dccaf11d5311@att.net> <vh00jj$1m6co$1@dont-email.me> <97304048-24f5-4625-82a7-d17427f2f6e3@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 12 Nov 2024 22:38:50 +0100 (CET) Injection-Info: dont-email.me; posting-host="f389576d605c7083f195b475b8318e8d"; logging-data="1891157"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18VJzhOq6LPjNJHzY6pIuvJmv7fRHvKNmY=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:tQQj2N/pGe5LCs2RUl8Q0NlbTUo= Content-Language: en-US In-Reply-To: <97304048-24f5-4625-82a7-d17427f2f6e3@att.net> Bytes: 3053 On 12.11.2024 20:01, Jim Burns wrote: > On 11/12/2024 11:43 AM, WM wrote: >> No, the intervals remain constant >> in size and multitude. > > Intervals which are constant _only_ > in size and multitude > are not constant absolutely. They would suffer to cover all rationals completely if Cantor's bijection was complete. > These intervals > {[n-⅒,n+⅒]: n∈ℕ⁺} > cover all naturals ℕ⁺ and > do not cover all fractions ℕ⁺/ℕ⁺ Right. > >> But the rationals are more in the sense that >> they include all naturals and 1/2. > > These intervals > {[i/j-⅒,i/j+⅒]: i/j∈ℕ⁺/ℕ⁺} > cover all fractions ℕ⁺/ℕ⁺ But these are more intervals. > > These intervals > {[n-⅒,n+⅒]: n∈ℕ⁺} > and these intervals > {[i/j-⅒,i/j+⅒]: i/j∈ℕ⁺/ℕ⁺} > are different intervals. In particular the second kind of intervals must be more. And this is the solution: The identity of the intervals for the geometric covering is irrelevant. I will elaborate o this in the next posting. Regards, WM