Deutsch   English   Français   Italiano  
<vh0hta$1pmql$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Tue, 12 Nov 2024 22:38:50 +0100
Organization: A noiseless patient Spider
Lines: 39
Message-ID: <vh0hta$1pmql$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vgb0ep$11df5$4@dont-email.me>
 <35794ceb-825a-45df-a55b-0a879cfe80ae@att.net> <vgfgpo$22pcv$1@dont-email.me>
 <40ac3ed2-5648-48c0-ac8f-61bdfd1c1e20@att.net> <vgg57o$25ovs$2@dont-email.me>
 <71fea361-0069-4a98-89a4-6de2eef62c5e@att.net> <vggh9v$27rg8$3@dont-email.me>
 <ff2c4d7c-33b4-4aad-a6b2-88799097b86b@att.net> <vghuoc$2j3sg$1@dont-email.me>
 <d79e791d-d670-4a5a-bd26-fdf72bcde6bc@att.net> <vgj4lk$2ova9$3@dont-email.me>
 <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org>
 <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me>
 <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me>
 <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> <vgsg04$t7fk$1@dont-email.me>
 <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> <vgtpmo$153hf$6@dont-email.me>
 <d17f7542-986e-4897-89b4-dccaf11d5311@att.net> <vh00jj$1m6co$1@dont-email.me>
 <97304048-24f5-4625-82a7-d17427f2f6e3@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 12 Nov 2024 22:38:50 +0100 (CET)
Injection-Info: dont-email.me; posting-host="f389576d605c7083f195b475b8318e8d";
	logging-data="1891157"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18VJzhOq6LPjNJHzY6pIuvJmv7fRHvKNmY="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:tQQj2N/pGe5LCs2RUl8Q0NlbTUo=
Content-Language: en-US
In-Reply-To: <97304048-24f5-4625-82a7-d17427f2f6e3@att.net>
Bytes: 3053

On 12.11.2024 20:01, Jim Burns wrote:
> On 11/12/2024 11:43 AM, WM wrote:

>> No, the intervals remain constant
>> in size and multitude.
> 
> Intervals which are constant _only_
> in size and multitude
> are not constant absolutely.

They would suffer to cover all rationals completely if Cantor's 
bijection was complete.
> These intervals
> {[n-⅒,n+⅒]: n∈ℕ⁺}
> cover all naturals ℕ⁺  and
> do not cover all fractions ℕ⁺/ℕ⁺

Right.
> 
>> But the rationals are more in the sense that
>> they include all naturals and 1/2.
> 
> These intervals
> {[i/j-⅒,i/j+⅒]: i/j∈ℕ⁺/ℕ⁺}
> cover all fractions ℕ⁺/ℕ⁺

But these are more intervals.
> 
> These intervals
> {[n-⅒,n+⅒]: n∈ℕ⁺}
> and these intervals
> {[i/j-⅒,i/j+⅒]: i/j∈ℕ⁺/ℕ⁺}
> are different intervals.

In particular the second kind of intervals must be more. And this is the 
solution: The identity of the intervals for the geometric covering is 
irrelevant. I will elaborate o this in the next posting.

Regards, WM