Deutsch   English   Français   Italiano  
<vh0nm0$1qvhf$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: olcott <polcott333@gmail.com>
Newsgroups: comp.theory
Subject: Re: The philosophy of logic reformulates existing ideas on a new
 basis --- infallibly correct
Date: Tue, 12 Nov 2024 17:17:20 -0600
Organization: A noiseless patient Spider
Lines: 27
Message-ID: <vh0nm0$1qvhf$1@dont-email.me>
References: <vfli1h$fj8s$1@dont-email.me> <vgoand$2464$1@news.muc.de>
 <vgobg7$3tnrn$2@dont-email.me> <vgodcf$kll$1@news.muc.de>
 <vgoed9$3ucjr$1@dont-email.me> <vgoi51$kll$2@news.muc.de>
 <vgojp1$3v611$1@dont-email.me> <vgol50$kll$3@news.muc.de>
 <vgom8r$3vue8$1@dont-email.me> <vgonlv$kll$4@news.muc.de>
 <vgoqv6$qht$2@dont-email.me> <vgq0dv$1trm$1@news.muc.de>
 <vgqifj$e0q0$2@dont-email.me> <vgqnfl$2ca0$1@news.muc.de>
 <vgqt2v$gdj5$2@dont-email.me> <vgr04c$dfn$1@news.muc.de>
 <vgr3vt$hf6i$2@dont-email.me> <vgr5fv$dfn$2@news.muc.de>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 13 Nov 2024 00:17:21 +0100 (CET)
Injection-Info: dont-email.me; posting-host="235d09a4263a99e9a1c88df5a1e911bc";
	logging-data="1932847"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19HBHiZMkmW9H3RAOwN/T5U"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:oKauMHEMM/zwVBEb0f7kxTOJEbc=
X-Antivirus-Status: Clean
X-Antivirus: Norton (VPS 241112-6, 11/12/2024), Outbound message
Content-Language: en-US
In-Reply-To: <vgr5fv$dfn$2@news.muc.de>
Bytes: 2721

On 11/10/2024 2:36 PM, Alan Mackenzie wrote:
> olcott <polcott333@gmail.com> wrote:
>> On 11/10/2024 1:04 PM, Alan Mackenzie wrote:
> 
> [ .... ]
> 
>>> I have addressed your point perfectly well.  Gödel's theorem is correct,
>>> therefore you are wrong.  What part of that don't you understand?
> 
>> YOU FAIL TO SHOW THE DETAILS OF HOW THIS DOES
>> NOT GET RID OF INCOMPLETENESS.
> 
> The details are unimportant.  Gödel's theorem is correct.  Your ideas
> contradict that theorem.  Therefore your ideas are incorrect.  Again, the
> precise details are unimportant, and you wouldn't understand them
> anyway.  Your ideas are as coherent as 2 + 2 = 5.
> 

Incomplete(L) ≡  ∃x ∈ Language(L) ((L ⊬ x) ∧ (L ⊬ ¬x))
When the above foundational definition ceases to exist then
Gödel's proof cannot prove incompleteness.

*You just don't understand this at its foundational level*

-- 
Copyright 2024 Olcott "Talent hits a target no one else can hit; Genius
hits a target no one else can see." Arthur Schopenhauer