Deutsch English Français Italiano |
<vh0nm0$1qvhf$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: olcott <polcott333@gmail.com> Newsgroups: comp.theory Subject: Re: The philosophy of logic reformulates existing ideas on a new basis --- infallibly correct Date: Tue, 12 Nov 2024 17:17:20 -0600 Organization: A noiseless patient Spider Lines: 27 Message-ID: <vh0nm0$1qvhf$1@dont-email.me> References: <vfli1h$fj8s$1@dont-email.me> <vgoand$2464$1@news.muc.de> <vgobg7$3tnrn$2@dont-email.me> <vgodcf$kll$1@news.muc.de> <vgoed9$3ucjr$1@dont-email.me> <vgoi51$kll$2@news.muc.de> <vgojp1$3v611$1@dont-email.me> <vgol50$kll$3@news.muc.de> <vgom8r$3vue8$1@dont-email.me> <vgonlv$kll$4@news.muc.de> <vgoqv6$qht$2@dont-email.me> <vgq0dv$1trm$1@news.muc.de> <vgqifj$e0q0$2@dont-email.me> <vgqnfl$2ca0$1@news.muc.de> <vgqt2v$gdj5$2@dont-email.me> <vgr04c$dfn$1@news.muc.de> <vgr3vt$hf6i$2@dont-email.me> <vgr5fv$dfn$2@news.muc.de> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Wed, 13 Nov 2024 00:17:21 +0100 (CET) Injection-Info: dont-email.me; posting-host="235d09a4263a99e9a1c88df5a1e911bc"; logging-data="1932847"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19HBHiZMkmW9H3RAOwN/T5U" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:oKauMHEMM/zwVBEb0f7kxTOJEbc= X-Antivirus-Status: Clean X-Antivirus: Norton (VPS 241112-6, 11/12/2024), Outbound message Content-Language: en-US In-Reply-To: <vgr5fv$dfn$2@news.muc.de> Bytes: 2721 On 11/10/2024 2:36 PM, Alan Mackenzie wrote: > olcott <polcott333@gmail.com> wrote: >> On 11/10/2024 1:04 PM, Alan Mackenzie wrote: > > [ .... ] > >>> I have addressed your point perfectly well. Gödel's theorem is correct, >>> therefore you are wrong. What part of that don't you understand? > >> YOU FAIL TO SHOW THE DETAILS OF HOW THIS DOES >> NOT GET RID OF INCOMPLETENESS. > > The details are unimportant. Gödel's theorem is correct. Your ideas > contradict that theorem. Therefore your ideas are incorrect. Again, the > precise details are unimportant, and you wouldn't understand them > anyway. Your ideas are as coherent as 2 + 2 = 5. > Incomplete(L) ≡ ∃x ∈ Language(L) ((L ⊬ x) ∧ (L ⊬ ¬x)) When the above foundational definition ceases to exist then Gödel's proof cannot prove incompleteness. *You just don't understand this at its foundational level* -- Copyright 2024 Olcott "Talent hits a target no one else can hit; Genius hits a target no one else can see." Arthur Schopenhauer