Deutsch English Français Italiano |
<vh7c5k$3d1r9$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Fri, 15 Nov 2024 12:43:47 +0100 Organization: A noiseless patient Spider Lines: 17 Message-ID: <vh7c5k$3d1r9$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vgj4lk$2ova9$3@dont-email.me> <f154138e-4482-4267-9332-151e2fd9f1ba@att.net> <vgkoi7$b5pp$1@solani.org> <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me> <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me> <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> <vgsg04$t7fk$1@dont-email.me> <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> <vgtpmo$153hf$6@dont-email.me> <d17f7542-986e-4897-89b4-dccaf11d5311@att.net> <vh00jj$1m6co$1@dont-email.me> <97304048-24f5-4625-82a7-d17427f2f6e3@att.net> <vh0hta$1pmql$1@dont-email.me> <65febd06-662b-4fa4-9aa8-f7353a79a110@att.net> <vh2k9p$29cql$1@dont-email.me> <157a949d-6c19-4693-8cee-9e067268ae45@att.net> <vh35nd$2d81g$1@dont-email.me> <cb0c9917-09a9-45f0-8fe9-cd059fa82dde@att.net> <vh4itg$2o3vu$1@dont-email.me> <8165b44b-1ba5-429d-8317-0b043b214b53@att.net> <vh76bi$3bnde$1@dont-email.me> <5b085f20fd9f5ec67026fb86f41654bb79e4868c@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Fri, 15 Nov 2024 12:43:48 +0100 (CET) Injection-Info: dont-email.me; posting-host="5be5ddc0cd157e179a3380074c75b3ad"; logging-data="3573609"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19fEqZ3vP6qMsejIjY3H2F7iUSXfZyvbQc=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:zaIGSXDmhvKEiBekJclJuXHkXFk= Content-Language: en-US In-Reply-To: <5b085f20fd9f5ec67026fb86f41654bb79e4868c@i2pn2.org> Bytes: 2666 On 15.11.2024 12:31, joes wrote: > Am Fri, 15 Nov 2024 11:04:33 +0100 schrieb WM: > >> It can be proven for every finite geometric figure that covering it by >> small pieces or intervals does not depend on the individuality and >> therefore on the order of the pieces. >> That means if there is a configuration where the figure is not covered >> completely, every possible shuffling will also fail. > Duh. If some configuration doesn't cover it, shuffling the pieces changes > nothing. But there may be other configurations that do cover the figure. All configurations possible by the initial set of pieces can be obtained by shifting them. Regards, WM