Deutsch English Français Italiano |
<vh8rdn$3lhlu$4@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Sat, 16 Nov 2024 02:10:15 +0100 Organization: A noiseless patient Spider Lines: 63 Message-ID: <vh8rdn$3lhlu$4@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vgkoi7$b5pp$1@solani.org> <6d9f3b10-47ad-459c-9536-098ce91f514b@att.net> <vgni02$3osmc$1@dont-email.me> <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net> <vgpupb$abrr$2@dont-email.me> <fc4df00f-96d1-402f-89d2-739cb8ddd863@att.net> <vgsg04$t7fk$1@dont-email.me> <1fca3a53-1cb4-4fd2-85b6-85e9b69ca23b@att.net> <vgtpmo$153hf$6@dont-email.me> <d17f7542-986e-4897-89b4-dccaf11d5311@att.net> <vh00jj$1m6co$1@dont-email.me> <97304048-24f5-4625-82a7-d17427f2f6e3@att.net> <vh0hta$1pmql$1@dont-email.me> <65febd06-662b-4fa4-9aa8-f7353a79a110@att.net> <vh2k9p$29cql$1@dont-email.me> <157a949d-6c19-4693-8cee-9e067268ae45@att.net> <vh35nd$2d81g$1@dont-email.me> <cb0c9917-09a9-45f0-8fe9-cd059fa82dde@att.net> <vh4itg$2o3vu$1@dont-email.me> <8165b44b-1ba5-429d-8317-0b043b214b53@att.net> <vh76bi$3bnde$1@dont-email.me> <d90452a5-965b-443f-9146-96cdf9b3906c@att.net> <vh8ft0$3jqb5$3@dont-email.me> <vh8g5e$3juug$1@dont-email.me> <vh8otd$3lhlt$2@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sat, 16 Nov 2024 02:10:16 +0100 (CET) Injection-Info: dont-email.me; posting-host="061c908e89d74e356b31fd58551b9569"; logging-data="3851966"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18Qk+af7//eX5MzuYaZ6wVl" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:sekh9afiwFsFC9sbSNOWk5aTJzQ= In-Reply-To: <vh8otd$3lhlt$2@dont-email.me> Content-Language: de-DE Bytes: 3618 Am 16.11.2024 um 01:27 schrieb Moebius: > Hint: Let's consider your claim: "an infinite set is never exhausted". > > But IN \ {1} \ {2} \ {3} \ ... _should_ be {}, I'd say. After all, which > natural number would "remain" (=be) in the set > > IN \ {1} \ {2} \ {3} \ ... > > ? :-P > > Yeah, slightly "paradoxical". IN \ {1} is infinite, IN \ {1} \ {2} is > infinite, IN \ {1} \ {2} \ {3} is infinite, etc. Actually, for each and > everey natural number n: IN \ {1} \ ... \ {n} is infinite (in THIS sense > your "never" is true). But what's about IN \ {1} \ {2} \ {3} \ ...? > WHICH natural number would be in this set? :-P > > Be aware of the infinite! > > Remember: > > > You (WM) are misinterpreting the infinite as > > ☠( just like the finite, but bigger. > > . > . > . Actually, I'd prefer to consider a related problem (for certain technical reasons). Consider the (infinitely many) unions: {1} u {2}, {1} u {2} u {3}, ... Here you might claim: "an union of finite sets will never be infinite", after all for each and every n e IN: {1} u ... u {n} is finite (namely {1, ..., n}). (Hint: Thats WM's "position".) But actually, {1} u {2} u {3} u ... IS infinite, namely {1, 2, 3, ...} = IN. Technically, in set theory there's a certain union operation U which allows to "unite" infinitely many sets. There we would write: U{{1}, {2}, {3}, ...} = {1, 2, 3, ...} . [If we want to be PRECISE: U{{n} : n e IN} = IN.} Hope this helps. .. .. ..