Deutsch   English   Français   Italiano  
<vhasiv$59e5$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.logic
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Sat, 16 Nov 2024 20:42:22 +0100
Organization: A noiseless patient Spider
Lines: 24
Message-ID: <vhasiv$59e5$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vga5mb$st52$1@dont-email.me>
 <vga7qi$talf$1@dont-email.me> <03b90d6c-fff1-411d-9dec-1c5cc7058480@tha.de>
 <vgb1fj$128tl$1@dont-email.me> <vgb2r6$11df6$3@dont-email.me>
 <vgcs35$1fq8n$1@dont-email.me> <vgfepg$22hhn$1@dont-email.me>
 <vgg0ic$25pcn$1@dont-email.me> <vggai3$25spe$8@dont-email.me>
 <vgi0t7$2ji2i$1@dont-email.me> <vgiet5$2l5ni$1@dont-email.me>
 <vgl2hj$3794c$1@dont-email.me> <vgleau$bi0i$2@solani.org>
 <vgnq3i$3qgfe$1@dont-email.me> <vgoka6$3vg2p$1@dont-email.me>
 <vgq1cm$b5vj$1@dont-email.me> <vgq3ca$beif$1@dont-email.me>
 <vgsp1c$v1ss$1@dont-email.me> <vgsq2v$v5t1$1@dont-email.me>
 <vgvm6h$1k8co$1@dont-email.me> <vgvmvr$1kc5f$1@dont-email.me>
 <vh1vlb$25kic$1@dont-email.me> <vh2j89$29gco$1@dont-email.me>
 <vh4f7p$2o5hn$1@dont-email.me> <vh4job$2ov2c$1@dont-email.me>
 <vh78jp$3cbq7$1@dont-email.me> <vh7d5c$3cpaf$1@dont-email.me>
 <vh9o5u$3un1v$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Sat, 16 Nov 2024 20:42:23 +0100 (CET)
Injection-Info: dont-email.me; posting-host="f0afa40d0ce39769794fe7090928fec0";
	logging-data="173509"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18m62E4JvWU6Hwb9RSLokzFZs3PPVb6qXo="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:myPjZufzqVYVh6b7xGnkTh2dVCQ=
In-Reply-To: <vh9o5u$3un1v$1@dont-email.me>
Content-Language: en-US
Bytes: 2817

On 16.11.2024 10:21, Mikko wrote:
> On 2024-11-15 12:00:43 +0000, WM said:
> 
>> On 15.11.2024 11:43, Mikko wrote:
>>> On 2024-11-14 10:34:52 +0000, WM said:
>>
>>>> No. Covering by intervals is completely independent of their 
>>>> individuality and therefore of their order.
>>>
>>> Translated intervals are not the same as the original ones. Not only 
>>> their
>>> order but also their positions can be different as demonstrated by your
>>> example and mine, too.
>>
>> If they do not cover the whole figure in their initial order, then they 
>> cannot do so in any other order.
> 
> So you want to retract your claims that involve another order?

My claim is the obvious truth that the intervals [n - 1/10, n + 1/10] in 
every order do not cover the positive real line, let alone infinitely often.

Regards, WM