| Deutsch English Français Italiano |
|
<vhasiv$59e5$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.logic Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Sat, 16 Nov 2024 20:42:22 +0100 Organization: A noiseless patient Spider Lines: 24 Message-ID: <vhasiv$59e5$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vga5mb$st52$1@dont-email.me> <vga7qi$talf$1@dont-email.me> <03b90d6c-fff1-411d-9dec-1c5cc7058480@tha.de> <vgb1fj$128tl$1@dont-email.me> <vgb2r6$11df6$3@dont-email.me> <vgcs35$1fq8n$1@dont-email.me> <vgfepg$22hhn$1@dont-email.me> <vgg0ic$25pcn$1@dont-email.me> <vggai3$25spe$8@dont-email.me> <vgi0t7$2ji2i$1@dont-email.me> <vgiet5$2l5ni$1@dont-email.me> <vgl2hj$3794c$1@dont-email.me> <vgleau$bi0i$2@solani.org> <vgnq3i$3qgfe$1@dont-email.me> <vgoka6$3vg2p$1@dont-email.me> <vgq1cm$b5vj$1@dont-email.me> <vgq3ca$beif$1@dont-email.me> <vgsp1c$v1ss$1@dont-email.me> <vgsq2v$v5t1$1@dont-email.me> <vgvm6h$1k8co$1@dont-email.me> <vgvmvr$1kc5f$1@dont-email.me> <vh1vlb$25kic$1@dont-email.me> <vh2j89$29gco$1@dont-email.me> <vh4f7p$2o5hn$1@dont-email.me> <vh4job$2ov2c$1@dont-email.me> <vh78jp$3cbq7$1@dont-email.me> <vh7d5c$3cpaf$1@dont-email.me> <vh9o5u$3un1v$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Sat, 16 Nov 2024 20:42:23 +0100 (CET) Injection-Info: dont-email.me; posting-host="f0afa40d0ce39769794fe7090928fec0"; logging-data="173509"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18m62E4JvWU6Hwb9RSLokzFZs3PPVb6qXo=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:myPjZufzqVYVh6b7xGnkTh2dVCQ= In-Reply-To: <vh9o5u$3un1v$1@dont-email.me> Content-Language: en-US Bytes: 2817 On 16.11.2024 10:21, Mikko wrote: > On 2024-11-15 12:00:43 +0000, WM said: > >> On 15.11.2024 11:43, Mikko wrote: >>> On 2024-11-14 10:34:52 +0000, WM said: >> >>>> No. Covering by intervals is completely independent of their >>>> individuality and therefore of their order. >>> >>> Translated intervals are not the same as the original ones. Not only >>> their >>> order but also their positions can be different as demonstrated by your >>> example and mine, too. >> >> If they do not cover the whole figure in their initial order, then they >> cannot do so in any other order. > > So you want to retract your claims that involve another order? My claim is the obvious truth that the intervals [n - 1/10, n + 1/10] in every order do not cover the positive real line, let alone infinitely often. Regards, WM