Deutsch   English   Français   Italiano  
<vhcngu$kmv2$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Mikko <mikko.levanto@iki.fi>
Newsgroups: sci.logic
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
Date: Sun, 17 Nov 2024 14:28:14 +0200
Organization: -
Lines: 22
Message-ID: <vhcngu$kmv2$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vga7qi$talf$1@dont-email.me> <03b90d6c-fff1-411d-9dec-1c5cc7058480@tha.de> <vgb1fj$128tl$1@dont-email.me> <vgb2r6$11df6$3@dont-email.me> <vgcs35$1fq8n$1@dont-email.me> <vgfepg$22hhn$1@dont-email.me> <vgg0ic$25pcn$1@dont-email.me> <vggai3$25spe$8@dont-email.me> <vgi0t7$2ji2i$1@dont-email.me> <vgiet5$2l5ni$1@dont-email.me> <vgl2hj$3794c$1@dont-email.me> <vgleau$bi0i$2@solani.org> <vgnq3i$3qgfe$1@dont-email.me> <vgoka6$3vg2p$1@dont-email.me> <vgq1cm$b5vj$1@dont-email.me> <vgq3ca$beif$1@dont-email.me> <vgsp1c$v1ss$1@dont-email.me> <vgsq2v$v5t1$1@dont-email.me> <vgvm6h$1k8co$1@dont-email.me> <vgvmvr$1kc5f$1@dont-email.me> <vh1vlb$25kic$1@dont-email.me> <vh2j89$29gco$1@dont-email.me> <vh4f7p$2o5hn$1@dont-email.me> <vh4job$2ov2c$1@dont-email.me> <vh78jp$3cbq7$1@dont-email.me> <vh7d5c$3cpaf$1@dont-email.me> <vh9o5u$3un1v$1@dont-email.me> <vhasiv$59e5$1@dont-email.me> <vhcb2r$i5se$1@dont-email.me> <vhcgic$hge9$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sun, 17 Nov 2024 13:28:15 +0100 (CET)
Injection-Info: dont-email.me; posting-host="e058962f5bbbe0cfa5264c5cf2a7e895";
	logging-data="678882"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/evaSSTnp9L3tSzo+5F489"
User-Agent: Unison/2.2
Cancel-Lock: sha1:+qsf9hgOpnEIZn6a0fUbI6OVtQU=
Bytes: 2596

On 2024-11-17 10:29:31 +0000, WM said:

> Your J'(n) = (n/100 - 1/10, n/100 + 1/10) are 100 times more than mine.
> For every reordering of a finite subset of my intervals J(n) the 
> relative covering remains constant, namely 1/5.
> The analytical limit proves that the constant sequence 1/5, 1/5, 1/5, 
> ... has limit 1/5. This is the relative covering of the infinite set 
> and of every reordering.

My J'(n) are your J(n) translated much as your translated J(n) except
that they are not re-ordered.

My J'(n) are as numerous as your J(n): there is one of each for every
natural number n.

Each my J'(n) has the same size as your corresponding J(n): 1/5.

One more similarity is that neither is relevant to the subject.

-- 
Mikko