Deutsch   English   Français   Italiano  
<vhf33f$16f4o$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Mikko <mikko.levanto@iki.fi>
Newsgroups: sci.logic
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
Date: Mon, 18 Nov 2024 11:58:07 +0200
Organization: -
Lines: 39
Message-ID: <vhf33f$16f4o$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vgb1fj$128tl$1@dont-email.me> <vgb2r6$11df6$3@dont-email.me> <vgcs35$1fq8n$1@dont-email.me> <vgfepg$22hhn$1@dont-email.me> <vgg0ic$25pcn$1@dont-email.me> <vggai3$25spe$8@dont-email.me> <vgi0t7$2ji2i$1@dont-email.me> <vgiet5$2l5ni$1@dont-email.me> <vgl2hj$3794c$1@dont-email.me> <vgleau$bi0i$2@solani.org> <vgnq3i$3qgfe$1@dont-email.me> <vgoka6$3vg2p$1@dont-email.me> <vgq1cm$b5vj$1@dont-email.me> <vgq3ca$beif$1@dont-email.me> <vgsp1c$v1ss$1@dont-email.me> <vgsq2v$v5t1$1@dont-email.me> <vgvm6h$1k8co$1@dont-email.me> <vgvmvr$1kc5f$1@dont-email.me> <vh1vlb$25kic$1@dont-email.me> <vh2j89$29gco$1@dont-email.me> <vh4f7p$2o5hn$1@dont-email.me> <vh4job$2ov2c$1@dont-email.me> <vh78jp$3cbq7$1@dont-email.me> <vh7d5c$3cpaf$1@dont-email.me> <vh9o5u$3un1v$1@dont-email.me> <vhasiv$59e5$1@dont-email.me> <vhcb2r$i5se$1@dont-email.me> <vhcgic$hge9$1@dont-email.me> <vhcngu$kmv2$1@dont-email.me> <35274130-ffa0-4d11-b634-f2feb3851416@tha.de>
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 18 Nov 2024 10:58:07 +0100 (CET)
Injection-Info: dont-email.me; posting-host="0c5c179bf3417057b9ac7f8b057c49bc";
	logging-data="1260696"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18bQVBEA5H0eGoVlByXkZsS"
User-Agent: Unison/2.2
Cancel-Lock: sha1:QXFpx3eQKHMPAhY1TjoLyWI3VgU=
Bytes: 3142

On 2024-11-17 12:46:29 +0000, WM said:

> On 17.11.2024 13:28, Mikko wrote:
>> On 2024-11-17 10:29:31 +0000, WM said:
>> 
>>> Your J'(n) = (n/100 - 1/10, n/100 + 1/10) are 100 times more than mine.
>>> For every reordering of a finite subset of my intervals J(n) the 
>>> relative covering remains constant, namely 1/5.
>>> The analytical limit proves that the constant sequence 1/5, 1/5, 1/5, 
>>> ... has limit 1/5. This is the relative covering of the infinite set 
>>> and of every reordering.
>> 
>> My J'(n) are your J(n) translated much as your translated J(n) except
>> that they are not re-ordered.
>> 
>> My J'(n) are as numerous as your J(n): there is one of each for every
>> natural number n.
> 
> There are 100 intervals for each natural number.
> This can be proven by bijecting J'(100n) and J(n). My intervals are 
> then exhausted, yours are not.

Irrelevant.

>> Each my J'(n) has the same size as your corresponding J(n): 1/5.
> 
>> One more similarity is that neither is relevant to the subject.
> 
> Only if you believe in matheology and resist mathematics.

In mathematics unproven claims do not count.

> Geometry says that your intervals cover the real line, my do not.

Geometry is mathematics so unproven claims do not count.

-- 
Mikko