| Deutsch English Français Italiano |
|
<vhgebm$1eu67$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!weretis.net!feeder9.news.weretis.net!news.quux.org!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Mon, 18 Nov 2024 23:16:22 +0100 Organization: A noiseless patient Spider Lines: 34 Message-ID: <vhgebm$1eu67$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vh0hta$1pmql$1@dont-email.me> <65febd06-662b-4fa4-9aa8-f7353a79a110@att.net> <vh2k9p$29cql$1@dont-email.me> <157a949d-6c19-4693-8cee-9e067268ae45@att.net> <vh35nd$2d81g$1@dont-email.me> <cb0c9917-09a9-45f0-8fe9-cd059fa82dde@att.net> <vh4itg$2o3vu$1@dont-email.me> <8165b44b-1ba5-429d-8317-0b043b214b53@att.net> <vh76bi$3bnde$1@dont-email.me> <d90452a5-965b-443f-9146-96cdf9b3906c@att.net> <vh8ft0$3jqb5$3@dont-email.me> <vh8g5e$3juug$1@dont-email.me> <vh8otd$3lhlt$2@dont-email.me> <vhb1is$6hbv$2@dont-email.me> <vhb1mu$6hbv$4@dont-email.me> <vhb32t$7ese$1@dont-email.me> <vhch7n$hge9$2@dont-email.me> <vhcieh$jjk5$1@dont-email.me> <vhcjg5$hdd4$3@dont-email.me> <vhckkh$k32g$1@dont-email.me> <vhcp0r$hge9$6@dont-email.me> <vhd7d7$nt37$1@dont-email.me> <vhd9lq$obb0$1@dont-email.me> <vhdl0k$qltl$1@dont-email.me> <vhfqcv$1adld$1@dont-email.me> <vhfso7$1bik6$1@dont-email.me> <vhg0h8$1adlc$4@dont-email.me> <vhgd9j$1eq8t$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 18 Nov 2024 23:16:23 +0100 (CET) Injection-Info: dont-email.me; posting-host="ee9e943c940317c6007b94cfb74fdbb7"; logging-data="1538247"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18BzfAKJlz9Ptkn83KCUx8LwtYQGBEM8Pk=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:ARZLHb8c5gdshdxo+BBmDvs3Jh4= Content-Language: en-US In-Reply-To: <vhgd9j$1eq8t$1@dont-email.me> Bytes: 3065 On 18.11.2024 22:58, FromTheRafters wrote: > on 11/18/2024, WM supposed : >> On 18.11.2024 18:15, FromTheRafters wrote: >>> WM brought next idea : >> >>>>> |ℕ| - |ℕ| = 0 because if you subtract one element from ℕ then you have >>>> no longer ℕ and therefore no longer |ℕ| describing it. >>> >>> Still wrong. >> >> If you remove one element from ℕ, then you have still ℵo but no longer >> all elements of ℕ. > > But you do have now a proper subset of the naturals the same size as > before. It has one element less, hence the "size" ℵo is a very unsharp measure. > >> If |ℕ| describes the number of elements, then it has changed to |ℕ| - 1. > > Minus one is not defined. Subtracting an element is defined. |ℕ| - 1 is defined as the number of elements minus 1. > >> If you don't like |ℕ| then call this number the number of natural >> numbers. > > Why would I do that when it is the *SIZE* of the smallest infinite set. The set of prime numbers is smaller. Regards, WM