| Deutsch English Français Italiano |
|
<vhgemi$ca9e$1@solani.org> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!news.mixmin.net!weretis.net!feeder8.news.weretis.net!reader5.news.weretis.net!news.solani.org!.POSTED!not-for-mail From: Mild Shock <janburse@fastmail.fm> Newsgroups: sci.logic Subject: Re: How to prove this theorem with intuitionistic natural deduction? Date: Mon, 18 Nov 2024 23:22:11 +0100 Message-ID: <vhgemi$ca9e$1@solani.org> References: <vhgdq0$19evr$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 18 Nov 2024 22:22:10 -0000 (UTC) Injection-Info: solani.org; logging-data="403758"; mail-complaints-to="abuse@news.solani.org" User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0 SeaMonkey/2.53.19 Cancel-Lock: sha1:l+iApJgYDrjkutLF7JvPdIeWeKs= In-Reply-To: <vhgdq0$19evr$1@dont-email.me> X-User-ID: eJwNyMkNwEAIBLCWWHGXAwP0X0Lys6xsz+BiaqKnR9flyc43lPKCwjttem2QkPtdHlvoRzq7xwChCJ3xT35ojxZd Bytes: 1487 Lines: 20 0: P -> (Q -> R) (Premisse) 1: P /\ Q (Assumption) 2: P (/\E,1) 3: Q -> R (->E,0,2) 4: Q (/\E,1) 5: R (->E,3,4) 6: P /\ Q -> R (Discharge,1) Julio Di Egidio schrieb: > Dear logicians, > > How to prove the following theorem with natural deduction in > intuitionistic propositional logic (namely, no classical inference rules)? > > `(P -> Q -> R) |- (P /\ Q -> R)` > > Thanks for any help. > > -Julio