Deutsch   English   Français   Italiano  
<vhgfo7$1f8j9$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: FromTheRafters <FTR@nomail.afraid.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Mon, 18 Nov 2024 17:40:03 -0500
Organization: Peripheral Visions
Lines: 39
Message-ID: <vhgfo7$1f8j9$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>   <65febd06-662b-4fa4-9aa8-f7353a79a110@att.net> <vh2k9p$29cql$1@dont-email.me> <157a949d-6c19-4693-8cee-9e067268ae45@att.net> <vh35nd$2d81g$1@dont-email.me> <cb0c9917-09a9-45f0-8fe9-cd059fa82dde@att.net> <vh4itg$2o3vu$1@dont-email.me> <8165b44b-1ba5-429d-8317-0b043b214b53@att.net> <vh76bi$3bnde$1@dont-email.me> <d90452a5-965b-443f-9146-96cdf9b3906c@att.net> <vh8ft0$3jqb5$3@dont-email.me> <vh8g5e$3juug$1@dont-email.me> <vh8otd$3lhlt$2@dont-email.me> <vhb1is$6hbv$2@dont-email.me> <vhb1mu$6hbv$4@dont-email.me> <vhb32t$7ese$1@dont-email.me> <vhch7n$hge9$2@dont-email.me> <vhcieh$jjk5$1@dont-email.me> <vhcjg5$hdd4$3@dont-email.me> <vhckkh$k32g$1@dont-email.me> <vhcp0r$hge9$6@dont-email.me> <vhd7d7$nt37$1@dont-email.me> <vhd9lq$obb0$1@dont-email.me> <vhdl0k$qltl$1@dont-email.me> <vhfqcv$1adld$1@dont-email.me> <vhfso7$1bik6$1@dont-email.me> <vhg0h8$1adlc$4@dont-email.me> <vhgd9j$1eq8t$1@dont-email.me> <vhgebm$1eu67$2@dont-email.me>
Reply-To: erratic.howard@gmail.com
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 18 Nov 2024 23:40:07 +0100 (CET)
Injection-Info: dont-email.me; posting-host="4ef6f24f43c15d384d0aa80a56cbcf9f";
	logging-data="1548905"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19fBUM9/gwxb7f8rNQiXD1T5nxb8GC+fb0="
Cancel-Lock: sha1:lbUxvwsoLf/xbE5R0RCHmWwpfqQ=
X-Newsreader: MesNews/1.08.06.00-gb
X-ICQ: 1701145376
Bytes: 3222

WM wrote on 11/18/2024 :
> On 18.11.2024 22:58, FromTheRafters wrote:
>> on 11/18/2024, WM supposed :
>>> On 18.11.2024 18:15, FromTheRafters wrote:
>>>> WM brought next idea :
>>>
>>>>>> |ℕ| - |ℕ| = 0 because if you subtract one element from ℕ then you have
>>>>> no longer ℕ and therefore no longer |ℕ| describing it.
>>>>
>>>> Still wrong.
>>>
>>> If you remove one element from ℕ, then you have still ℵo but no longer all 
>>> elements of ℕ.
>> 
>> But you do have now a proper subset of the naturals the same size as 
>> before.
>
> It has one element less, hence the "size" ℵo is a very unsharp measure.

Comparing the size of sets by bijection. Bijection of finite sets give 
you a same number of elements, bijection of infinite sets give you same 
size of set.

>>> If |ℕ| describes the number of elements, then it has changed to |ℕ| - 1.
>> 
>> Minus one is not defined.
>
> Subtracting an element is defined. |ℕ| - 1 is defined as the number of 
> elements minus 1.

Nope!

>>> If you don't like |ℕ| then call this number the number of natural numbers.
>> 
>> Why would I do that when it is the *SIZE* of the smallest infinite set.
>
> The set of prime numbers is smaller.

No, it is not. There is a bijection.