Deutsch   English   Français   Italiano  
<vho19u$n2pd$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.logic
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Thu, 21 Nov 2024 20:22:39 +0100
Organization: A noiseless patient Spider
Lines: 32
Message-ID: <vho19u$n2pd$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vga5mb$st52$1@dont-email.me>
 <vga7qi$talf$1@dont-email.me> <b7c91a30-bc53-487c-a395-daf023dbb78c@tha.de>
 <vhmu26$j2uq$1@dont-email.me> <vhn39o$jf6v$2@dont-email.me>
 <vhn3un$k16b$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Thu, 21 Nov 2024 20:22:39 +0100 (CET)
Injection-Info: dont-email.me; posting-host="56fd42f3dbe31aee8233c4a1d22ff497";
	logging-data="756525"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18ESgxFjgn014NDOdmUzA06c+sPwY67Xvk="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:Ga31JdjvF6kQ2QDzBGJE+kVUm6U=
In-Reply-To: <vhn3un$k16b$1@dont-email.me>
Content-Language: en-US
Bytes: 2131

On 21.11.2024 12:01, Mikko wrote:
> On 2024-11-21 10:50:32 +0000, WM said:
> 
>> On 21.11.2024 10:21, Mikko wrote:
>>> On 2024-11-04 10:47:39 +0000, WM said:
>>>
>>
>>>>>> That is wrong. The measure outside of the intervals is infinite. 
>>>>>> Hence there exists a point outside. This point has two nearest 
>>>>>> intervals
>>>>>
>>>>> No, it hasn't.
>>>>
>>>> In geometry it has.
>>>
>>> Depends on the set of intervals.
>>
>> No. Every point in the complement is closer to the end of an interval 
>> than to its contents of rationals.
> 
> True but irrelevant because it may be even closer to the end of
> another interval.

Every end of any interval is irrational.

> In particular with Cantor's set of intervals
> where there is no nearest interval.

For every point of the complement, every interval has irrational ends.

Regards, WM