Deutsch English Français Italiano |
<vho19u$n2pd$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.logic Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Thu, 21 Nov 2024 20:22:39 +0100 Organization: A noiseless patient Spider Lines: 32 Message-ID: <vho19u$n2pd$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <0e67005f-120e-4b3b-a4d2-ec4bbc1c5662@att.net> <vga5mb$st52$1@dont-email.me> <vga7qi$talf$1@dont-email.me> <b7c91a30-bc53-487c-a395-daf023dbb78c@tha.de> <vhmu26$j2uq$1@dont-email.me> <vhn39o$jf6v$2@dont-email.me> <vhn3un$k16b$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Thu, 21 Nov 2024 20:22:39 +0100 (CET) Injection-Info: dont-email.me; posting-host="56fd42f3dbe31aee8233c4a1d22ff497"; logging-data="756525"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18ESgxFjgn014NDOdmUzA06c+sPwY67Xvk=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:Ga31JdjvF6kQ2QDzBGJE+kVUm6U= In-Reply-To: <vhn3un$k16b$1@dont-email.me> Content-Language: en-US Bytes: 2131 On 21.11.2024 12:01, Mikko wrote: > On 2024-11-21 10:50:32 +0000, WM said: > >> On 21.11.2024 10:21, Mikko wrote: >>> On 2024-11-04 10:47:39 +0000, WM said: >>> >> >>>>>> That is wrong. The measure outside of the intervals is infinite. >>>>>> Hence there exists a point outside. This point has two nearest >>>>>> intervals >>>>> >>>>> No, it hasn't. >>>> >>>> In geometry it has. >>> >>> Depends on the set of intervals. >> >> No. Every point in the complement is closer to the end of an interval >> than to its contents of rationals. > > True but irrelevant because it may be even closer to the end of > another interval. Every end of any interval is irrational. > In particular with Cantor's set of intervals > where there is no nearest interval. For every point of the complement, every interval has irrational ends. Regards, WM