Deutsch English Français Italiano |
<vhq5kn$1793m$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Fri, 22 Nov 2024 15:48:55 +0100 Organization: A noiseless patient Spider Lines: 27 Message-ID: <vhq5kn$1793m$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vhch7n$hge9$2@dont-email.me> <vhcieh$jjk5$1@dont-email.me> <vhcjg5$hdd4$3@dont-email.me> <vhckkh$k32g$1@dont-email.me> <vhcp0r$hge9$6@dont-email.me> <vhd7d7$nt37$1@dont-email.me> <vhd9lq$obb0$1@dont-email.me> <vhdl0k$qltl$1@dont-email.me> <vhfqcv$1adld$1@dont-email.me> <vhfso7$1bik6$1@dont-email.me> <vhg0h8$1adlc$4@dont-email.me> <vhgd9j$1eq8t$1@dont-email.me> <vhgebm$1eu67$2@dont-email.me> <vhgfo7$1f8j9$1@dont-email.me> <vhiak4$1sjsn$2@dont-email.me> <vhif57$1u588$1@dont-email.me> <vhkj7j$25fe$2@dont-email.me> <87babad37e3024a0fb219567f6fb2b7c46ff5eb7@i2pn2.org> <vhlaj1$7jan$2@dont-email.me> <ed7c39e15e18de4498880a0035735ebbacd9a325@i2pn2.org> <vhn6pr$kgge$2@dont-email.me> <4272642d272e86ca32e5a4c8057edd2336d2c5c1@i2pn2.org> <cfafed3b-f7cc-4ccd-b896-1f4e41743944@tha.de> <vhos1g$t9m9$1@dont-email.me> <vhpd1h$139mr$1@dont-email.me> <vhps7r$15kfd$3@dont-email.me> <3b4d6b95bdde0ecc281f4511eb4632922e9fff8e@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Fri, 22 Nov 2024 15:48:57 +0100 (CET) Injection-Info: dont-email.me; posting-host="e66bb22bbe05828732e73e7a13999941"; logging-data="1287286"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/4iWZfuTpScJM88Rkk6Q1T6vOQNU2rvfw=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:DxNr2BWjzViM20ICXhmGUE7yb34= Content-Language: en-US In-Reply-To: <3b4d6b95bdde0ecc281f4511eb4632922e9fff8e@i2pn2.org> Bytes: 2991 On 22.11.2024 13:39, joes wrote: > Am Fri, 22 Nov 2024 13:08:28 +0100 schrieb WM: >> All endsegments have an empty intersection. > No, all segments have an infinite intersection with each other, > namely the one that comes "later", with a larger index. The set of all endsegmente has an empty intersection. > >> Since every endsegment can lose only one >> number, there must be infinitely many endsegments involved in reducing >> the intersection from infinite to empty. > Exactly. That is all of them, there are infinitely segments. Up to every endsegemnet with visible index, the intersection is infinite: ∩{E(1), E(2), ..., E(k)} = E(k) with |E(k)| = ℵo. > >>>> What one cannot be counted to? >> Just the indices involved in reducing the intersection from infinite to >> empty. They are dark. > They don't exist. The decrease from ℵo to 0 can only be accomplished by ℵo endsegments each of which loses one number until all numbers are gone. Regards, WM