Deutsch   English   Français   Italiano  
<vhq5kn$1793m$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Fri, 22 Nov 2024 15:48:55 +0100
Organization: A noiseless patient Spider
Lines: 27
Message-ID: <vhq5kn$1793m$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vhch7n$hge9$2@dont-email.me>
 <vhcieh$jjk5$1@dont-email.me> <vhcjg5$hdd4$3@dont-email.me>
 <vhckkh$k32g$1@dont-email.me> <vhcp0r$hge9$6@dont-email.me>
 <vhd7d7$nt37$1@dont-email.me> <vhd9lq$obb0$1@dont-email.me>
 <vhdl0k$qltl$1@dont-email.me> <vhfqcv$1adld$1@dont-email.me>
 <vhfso7$1bik6$1@dont-email.me> <vhg0h8$1adlc$4@dont-email.me>
 <vhgd9j$1eq8t$1@dont-email.me> <vhgebm$1eu67$2@dont-email.me>
 <vhgfo7$1f8j9$1@dont-email.me> <vhiak4$1sjsn$2@dont-email.me>
 <vhif57$1u588$1@dont-email.me> <vhkj7j$25fe$2@dont-email.me>
 <87babad37e3024a0fb219567f6fb2b7c46ff5eb7@i2pn2.org>
 <vhlaj1$7jan$2@dont-email.me>
 <ed7c39e15e18de4498880a0035735ebbacd9a325@i2pn2.org>
 <vhn6pr$kgge$2@dont-email.me>
 <4272642d272e86ca32e5a4c8057edd2336d2c5c1@i2pn2.org>
 <cfafed3b-f7cc-4ccd-b896-1f4e41743944@tha.de> <vhos1g$t9m9$1@dont-email.me>
 <vhpd1h$139mr$1@dont-email.me> <vhps7r$15kfd$3@dont-email.me>
 <3b4d6b95bdde0ecc281f4511eb4632922e9fff8e@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 22 Nov 2024 15:48:57 +0100 (CET)
Injection-Info: dont-email.me; posting-host="e66bb22bbe05828732e73e7a13999941";
	logging-data="1287286"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/4iWZfuTpScJM88Rkk6Q1T6vOQNU2rvfw="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:DxNr2BWjzViM20ICXhmGUE7yb34=
Content-Language: en-US
In-Reply-To: <3b4d6b95bdde0ecc281f4511eb4632922e9fff8e@i2pn2.org>
Bytes: 2991

On 22.11.2024 13:39, joes wrote:
> Am Fri, 22 Nov 2024 13:08:28 +0100 schrieb WM:

>> All endsegments have an empty intersection.
> No, all segments have an infinite intersection with each other,
> namely the one that comes "later", with a larger index.

The set of all endsegmente has an empty intersection.
> 
>> Since every endsegment can lose only one
>> number, there must be infinitely many endsegments involved in reducing
>> the intersection from infinite to empty.
> Exactly. That is all of them, there are infinitely segments.

Up to every endsegemnet with visible index, the intersection is 
infinite: ∩{E(1), E(2), ..., E(k)} = E(k) with |E(k)| = ℵo.
> 
>>>> What one cannot be counted to?
>> Just the indices involved in reducing the intersection from infinite to
>> empty. They are dark.
> They don't exist.

The decrease from ℵo to 0 can only be accomplished by ℵo endsegments 
each of which loses one number until all numbers are gone.

Regards, WM