| Deutsch English Français Italiano |
|
<vhrojb$1j7o7$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Sat, 23 Nov 2024 06:18:35 +0100
Organization: A noiseless patient Spider
Lines: 20
Message-ID: <vhrojb$1j7o7$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vhb32t$7ese$1@dont-email.me>
<vhch7n$hge9$2@dont-email.me> <vhcieh$jjk5$1@dont-email.me>
<vhcjg5$hdd4$3@dont-email.me> <vhckkh$k32g$1@dont-email.me>
<vhcp0r$hge9$6@dont-email.me> <vhd7d7$nt37$1@dont-email.me>
<vhd9lq$obb0$1@dont-email.me> <vhdl0k$qltl$1@dont-email.me>
<vhfqcv$1adld$1@dont-email.me> <vhfso7$1bik6$1@dont-email.me>
<vhg0h8$1adlc$4@dont-email.me> <vhgd9j$1eq8t$1@dont-email.me>
<vhgebm$1eu67$2@dont-email.me> <vhgfo7$1f8j9$1@dont-email.me>
<vhiak4$1sjsn$2@dont-email.me>
<094dadad718eaa3827ad225d54aaa45b880dd821@i2pn2.org>
<vhkir2$28qt$2@dont-email.me>
<3399a95e386bc5864f1cfcfc9f91f48366e0fed2@i2pn2.org>
<vhlamn$7jan$3@dont-email.me>
<0d551828411c0588000796fa107a16b1e23a866c@i2pn2.org>
<vhprpj$15kfd$2@dont-email.me>
<74bdc0f14fd0f2c6bfd9ac511a37f66b41948ac4@i2pn2.org>
<vhq5ov$1793m$2@dont-email.me>
<b82423aaf8df2203171c1eb1afcb913925875795@i2pn2.org>
<vhqrsu$1bb1f$2@dont-email.me> <vhqs6k$1b31o$4@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Sat, 23 Nov 2024 06:18:36 +0100 (CET)
Injection-Info: dont-email.me; posting-host="27740ff8e43fcfb22f5893043c471488";
logging-data="1679111"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+6fyyV8yGGYqeIIYcKZjvx"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:CDT3H4IRNepIOLWJu4PeeXZ+Fpc=
Content-Language: de-DE
In-Reply-To: <vhqs6k$1b31o$4@dont-email.me>
Bytes: 2636
>> On 22.11.2024 16:11, joes wrote:
>>> Am Fri, 22 Nov 2024 15:51:11 +0100 schrieb WM:
>>>> the sets of naturals and of prime numbers [can] cover each other.
>>>>
>>> As it should. You can give each prime an index.
Indeed! The two formulas
| p(1) = min P
| p(n+1) = min {p e P : p > p(n)} (for all n e IN)
(recursively) define the function p: IN --> P. Where IN is the set of
all natural numbers and P is the set of all prime numbers.
Hint: p(1) = 2, p(2) = 3, p(3) = 5, ...
Actually, if p e P, then there is an (index) n e IN such that p(n) = p.
(It's easy to prove that p: IN --> P is a bijection.)