Deutsch   English   Français   Italiano  
<vhrpcp$1j7o6$4@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Sat, 23 Nov 2024 06:32:09 +0100
Organization: A noiseless patient Spider
Lines: 28
Message-ID: <vhrpcp$1j7o6$4@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vhch7n$hge9$2@dont-email.me>
 <vhcieh$jjk5$1@dont-email.me> <vhcjg5$hdd4$3@dont-email.me>
 <vhckkh$k32g$1@dont-email.me> <vhcp0r$hge9$6@dont-email.me>
 <vhd7d7$nt37$1@dont-email.me> <vhd9lq$obb0$1@dont-email.me>
 <vhdl0k$qltl$1@dont-email.me> <vhfqcv$1adld$1@dont-email.me>
 <vhfso7$1bik6$1@dont-email.me> <vhg0h8$1adlc$4@dont-email.me>
 <vhgd9j$1eq8t$1@dont-email.me> <vhgebm$1eu67$2@dont-email.me>
 <vhgfo7$1f8j9$1@dont-email.me> <vhiak4$1sjsn$2@dont-email.me>
 <094dadad718eaa3827ad225d54aaa45b880dd821@i2pn2.org>
 <vhkir2$28qt$2@dont-email.me>
 <3399a95e386bc5864f1cfcfc9f91f48366e0fed2@i2pn2.org>
 <vhlamn$7jan$3@dont-email.me>
 <0d551828411c0588000796fa107a16b1e23a866c@i2pn2.org>
 <vhprpj$15kfd$2@dont-email.me>
 <74bdc0f14fd0f2c6bfd9ac511a37f66b41948ac4@i2pn2.org>
 <vhq5ov$1793m$2@dont-email.me>
 <b82423aaf8df2203171c1eb1afcb913925875795@i2pn2.org>
 <vhqrsu$1bb1f$2@dont-email.me> <vhqs6k$1b31o$4@dont-email.me>
 <vhrojb$1j7o7$1@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Sat, 23 Nov 2024 06:32:09 +0100 (CET)
Injection-Info: dont-email.me; posting-host="27740ff8e43fcfb22f5893043c471488";
	logging-data="1679110"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1+gNVIwJdzkbVHWv6gaPLZ6"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:50vyiVXExxz04X2IpSuGgo+qvEk=
In-Reply-To: <vhrojb$1j7o7$1@dont-email.me>
Content-Language: de-DE
Bytes: 2813

Am 23.11.2024 um 06:18 schrieb Moebius:
>>> On 22.11.2024 16:11, joes wrote:
>>>> Am Fri, 22 Nov 2024 15:51:11 +0100 schrieb WM:
> 
>>>>> the sets of naturals and of prime numbers [can] cover each other.
>>>>>
>>>> As it should. You can give each prime an index.
> 
> Indeed! The two formulas
> 
> | p(1) = min P
> | p(n+1) = min {p e P : p > p(n)}   (for all n e IN)
> 
> (recursively) define the function p: IN --> P. Where IN is the set of 
> all natural numbers and P is the set of all prime numbers.
> 
> Hint: p(1) = 2, p(2) = 3, p(3) = 5, ...
> 
> Actually, if p e P, then there is an (index) n e IN such that p(n) = p.
> 
> (It's easy to prove that p: IN --> P is a bijection.)

p(n) is the n-th prime number in the sequence of prime numbers ordered 
by size.

..
..
..