Deutsch   English   Français   Italiano  
<vhsi31$1n2ck$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Sat, 23 Nov 2024 13:33:37 +0100
Organization: A noiseless patient Spider
Lines: 16
Message-ID: <vhsi31$1n2ck$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vhcieh$jjk5$1@dont-email.me>
 <vhcjg5$hdd4$3@dont-email.me> <vhckkh$k32g$1@dont-email.me>
 <vhcp0r$hge9$6@dont-email.me> <vhd7d7$nt37$1@dont-email.me>
 <vhd9lq$obb0$1@dont-email.me> <vhdl0k$qltl$1@dont-email.me>
 <vhfqcv$1adld$1@dont-email.me> <vhfso7$1bik6$1@dont-email.me>
 <vhg0h8$1adlc$4@dont-email.me> <vhgd9j$1eq8t$1@dont-email.me>
 <vhgebm$1eu67$2@dont-email.me> <vhgfo7$1f8j9$1@dont-email.me>
 <vhiak4$1sjsn$2@dont-email.me>
 <094dadad718eaa3827ad225d54aaa45b880dd821@i2pn2.org>
 <vhkir2$28qt$2@dont-email.me>
 <3399a95e386bc5864f1cfcfc9f91f48366e0fed2@i2pn2.org>
 <vhlamn$7jan$3@dont-email.me>
 <0d551828411c0588000796fa107a16b1e23a866c@i2pn2.org>
 <vhprpj$15kfd$2@dont-email.me>
 <74bdc0f14fd0f2c6bfd9ac511a37f66b41948ac4@i2pn2.org>
 <vhq5ov$1793m$2@dont-email.me>
 <b82423aaf8df2203171c1eb1afcb913925875795@i2pn2.org>
 <vhqrsu$1bb1f$2@dont-email.me> <vhqu9n$1bqev$1@dont-email.me>
 <vhs9v9$1krl6$3@dont-email.me> <vhshas$1n123$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
Injection-Date: Sat, 23 Nov 2024 13:33:37 +0100 (CET)
Injection-Info: dont-email.me; posting-host="c982331c931bcefed6712411caadd817";
	logging-data="1804692"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/crwWsxTcN1yeXFdMNdLnLxxDJ+7WSkeA="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:/FIG76J3BIyeeZkvK4lF/FXdt4Q=
Content-Language: en-US
In-Reply-To: <vhshas$1n123$1@dont-email.me>
Bytes: 2593

On 23.11.2024 13:20, FromTheRafters wrote:
> WM laid this down on his screen :

>> Let every unit interval after a natural number on the real axis be 
>> coloured white with exception of the intervals after the prime numbers 
>> which are coloured red. It is impossible to shift the red intervals so 
>> that the whole real axis becomes red. Every interval (10n, 10 (n+1)] 
>> is deficient - on the whole real axis.
> 
> So what? Your imaginings don't affect the fact that there is a bijection.

If there was a bijection, then the whole axis could become red.
Do you believe that?

Regards, WM