Deutsch   English   Français   Italiano  
<vi41rg$3cj8q$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!fu-berlin.de!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.logic
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Tue, 26 Nov 2024 09:45:36 +0100
Organization: A noiseless patient Spider
Lines: 30
Message-ID: <vi41rg$3cj8q$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vhn1jk$jf6v$1@dont-email.me>
 <27b8de9e-a17e-4116-ab5e-1e552bea0fce@att.net> <vhnmsi$n2pc$1@dont-email.me>
 <6d0d8060-fb60-4da6-bcdb-adc13a6179b0@att.net> <vho171$otvf$1@dont-email.me>
 <93c53518-55f8-4dca-aa3c-3e79ef268963@att.net> <vhoad2$qkpu$1@dont-email.me>
 <af54371f-192d-4fb5-a3f7-76c3d329bffd@att.net> <vhqt4q$1b873$1@dont-email.me>
 <ba4f8baf-7378-403e-a837-39f5c0145a93@att.net> <vhs58b$1krl6$2@dont-email.me>
 <9e03d68c-ae1e-4e2f-8004-55e6f89adb98@att.net>
 <cbac19e1-c2fe-47d0-84ce-88000729988c@tha.de>
 <96af151c-285d-4161-842a-63019cac9699@att.net> <vhti1v$1r2tr$2@dont-email.me>
 <a7ec6cd4-3a9b-4671-8594-56586c0ce917@att.net> <vhvbs4$28n6o$2@dont-email.me>
 <09f8a86f-3f75-4af8-a190-0def76c1ab82@att.net> <vhvviq$2bjrd$1@dont-email.me>
 <68dc9b71-cf5d-4614-94e2-8a616e722a63@att.net> <vi03un$2cv9g$1@dont-email.me>
 <67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me>
 <a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 26 Nov 2024 09:45:37 +0100 (CET)
Injection-Info: dont-email.me; posting-host="0a0757352dd822c88488d80397f1f101";
	logging-data="3558682"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/OC18w4x7s+NBzUhv8UPh/tct8w6/yYIA="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:YbVQBIPdEUqeWo7Sw9On1Cn/+aA=
Content-Language: en-US
In-Reply-To: <a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net>
Bytes: 2921

On 26.11.2024 06:58, Jim Burns wrote:
> On 11/25/2024 8:52 AM, WM wrote:

>> Finite cardinalities belong to dark endsegments.
> 
> Finite cardinals can change by 1

Yes. The last endsegments have 3, 2, 1, 0 elements.
> 
> Each end.segment Eᶠⁱⁿ(k) of the finite.cardinalities ℕᶠⁱⁿ
> holds a countable.to.from.0 least.element

No. All elements of finite endsegments  (and almost all of infinite 
endsegments) are dark.
>> The endsegments
>> only can have an empty intersection
>> if there are endsegments with 3, 2, 1, 0 elements.
> 
> The end.segments
> can only have a non.empty intersection
> if there is an element which is in each end.segment.

That is the case for every non-empty endsegment before all elements are 
lost.

Otherwise two endsegments with different elements must exist. That is 
impossible by inclusion monotony.

Regards, WM