| Deutsch English Français Italiano |
|
<vi428b$3cllo$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!fu-berlin.de!eternal-september.org!feeder2.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Tue, 26 Nov 2024 09:52:26 +0100 Organization: A noiseless patient Spider Lines: 12 Message-ID: <vi428b$3cllo$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vhprpj$15kfd$2@dont-email.me> <74bdc0f14fd0f2c6bfd9ac511a37f66b41948ac4@i2pn2.org> <vhq5ov$1793m$2@dont-email.me> <b82423aaf8df2203171c1eb1afcb913925875795@i2pn2.org> <vhqrsu$1bb1f$2@dont-email.me> <vhqu9n$1bqev$1@dont-email.me> <vhs9v9$1krl6$3@dont-email.me> <vhshas$1n123$1@dont-email.me> <vhsi31$1n2ck$1@dont-email.me> <vhsi7e$1n4sl$1@dont-email.me> <vhsit2$1n52r$1@dont-email.me> <vht7o6$1qo7j$1@dont-email.me> <vhtb3o$1r2tr$1@dont-email.me> <0d6d06a888e15ed2042aca8ec7e6ebb93590b7bc@i2pn2.org> <vhtgec$1rdku$3@dont-email.me> <8a2aedd8383a84ceef2fd985ac0bf529e2a0eccf@i2pn2.org> <vhuv94$25ro0$1@dont-email.me> <be7b74a5d83b8ceebd1ec380bb57ff4190ec0cae@i2pn2.org> <vhv61v$25uqa$5@dont-email.me> <b75deca6b1a0631255cf1402ee83db2b266edd22@i2pn2.org> <vhvnvc$2aq7k$1@dont-email.me> <3fe6ef31f562e0ddf598de46cf864986ca909687@i2pn2.org> <vi1pul$2n5v3$1@dont-email.me> <acdd835568051ba844f05c648c9d0b28e8f7601d@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Tue, 26 Nov 2024 09:52:27 +0100 (CET) Injection-Info: dont-email.me; posting-host="0a0757352dd822c88488d80397f1f101"; logging-data="3561144"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19byNrQCcJ9mQ473aDznzv4XGo7a7aAfo0=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:fXCTchomzbQrT1y4fFiE5swz714= Content-Language: en-US In-Reply-To: <acdd835568051ba844f05c648c9d0b28e8f7601d@i2pn2.org> Bytes: 2312 On 25.11.2024 18:52, Richard Damon wrote: > On 11/25/24 7:18 AM, WM wrote: >> >> All are in the union of all finite sets. > > But your logic can't handle an infinite union, as it can never complete > the process. The process is completed. Otherwise no Cantor bijection could exist. Regards, WM