Deutsch   English   Français   Italiano  
<vi7rnp$g2n7$3@solani.org>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!news.mixmin.net!weretis.net!feeder8.news.weretis.net!reader5.news.weretis.net!news.solani.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
Date: Wed, 27 Nov 2024 20:25:45 +0100
Message-ID: <vi7rnp$g2n7$3@solani.org>
References: <vg7cp8$9jka$1@dont-email.me> <vhsit2$1n52r$1@dont-email.me>
 <vht7o6$1qo7j$1@dont-email.me> <vhtb3o$1r2tr$1@dont-email.me>
 <0d6d06a888e15ed2042aca8ec7e6ebb93590b7bc@i2pn2.org>
 <vhtgec$1rdku$3@dont-email.me>
 <8a2aedd8383a84ceef2fd985ac0bf529e2a0eccf@i2pn2.org>
 <vhuv94$25ro0$1@dont-email.me>
 <be7b74a5d83b8ceebd1ec380bb57ff4190ec0cae@i2pn2.org>
 <vhv61v$25uqa$5@dont-email.me>
 <b75deca6b1a0631255cf1402ee83db2b266edd22@i2pn2.org>
 <vhvnvc$2aq7k$1@dont-email.me>
 <3fe6ef31f562e0ddf598de46cf864986ca909687@i2pn2.org>
 <vi1pul$2n5v3$1@dont-email.me>
 <9cb8aec671200bb6d71582fd607b876b7ec4c83a@i2pn2.org>
 <vi43br$3cllo$3@dont-email.me> <vi4ak0$3e1nc$1@dont-email.me>
 <vi4b5d$3dq30$1@dont-email.me>
 <40292abc147fee5a7bdd264b69d34ddf2061e59d@i2pn2.org>
 <vi4upt$3hg8t$1@dont-email.me>
 <c43fe07653eac2a9cc0432a6e289bfa1307613f8@i2pn2.org>
 <vi6rau$3v0dn$1@dont-email.me>
 <0bc3cdc8c096bba16decd94ad2af85d35da9b7b4@i2pn2.org>
 <vi7jv2$377e$1@dont-email.me> <vi7ns0$478h$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 27 Nov 2024 19:25:45 -0000 (UTC)
Injection-Info: solani.org;
	logging-data="527079"; mail-complaints-to="abuse@news.solani.org"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:SiTsfYF3ZoFZ2IG+ZAG9BlYryA8=
X-User-ID: eJwFwYEVREEEA8CWeJKgHGdP/yX8GYZcmxAFHu+VRvPqz7guTIsb8/K8ucafj52skOO+TCBjbMVodqL5AVBRFIo=
In-Reply-To: <vi7ns0$478h$1@dont-email.me>
Content-Language: en-US
Bytes: 3207
Lines: 33

On 27.11.2024 19:19, FromTheRafters wrote:
> WM explained :
>> On 27.11.2024 13:32, Richard Damon wrote:
>>> On 11/27/24 5:12 AM, WM wrote:
>>
>>>> Of course. |{1, 2, 3, 4, ...}| = |ℕ| and |{2, 3, 4, ...}| = |ℕ| - 1 
>>>> is consistent.
>>>
>>> So you think, but that is because you brain has been exploded by the 
>>> contradiction.
>>>
>>> We can get to your second set two ways, and the set itself can't know 
>>> which.
>>>
>>> We could have built the set by the operation of removing 1 like your 
>>> math implies, or we can get to it by the operation of increasing each 
>>> element by its successor, which must have the same number of elements,
>>
>> Yes, the same number of elements, but not the same number of natural 
>> numbers.
>>
>> Hint: Decreasing every element in the real interval (0, 1] by one 
>> point yields the real interval [0, 1). The set of points remains the 
>> same, the set of positive points decreases by 1.
> 
> If you have a successor function for the real numbers, why don't you 
> share it with the rest of the world?

I don't because almost all real numbers are dark. Nevertheless we know 
that the interval (0, 1] contains all small positive numbers. Hence 
shifting it by 1 point we get [0, 1).

Regards, WM