Deutsch   English   Français   Italiano  
<via83s$jk72$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Thu, 28 Nov 2024 18:09:16 +0100
Organization: A noiseless patient Spider
Lines: 20
Message-ID: <via83s$jk72$2@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <9e03d68c-ae1e-4e2f-8004-55e6f89adb98@att.net>
 <cbac19e1-c2fe-47d0-84ce-88000729988c@tha.de>
 <96af151c-285d-4161-842a-63019cac9699@att.net> <vhti1v$1r2tr$2@dont-email.me>
 <a7ec6cd4-3a9b-4671-8594-56586c0ce917@att.net> <vhvbs4$28n6o$2@dont-email.me>
 <09f8a86f-3f75-4af8-a190-0def76c1ab82@att.net> <vhvviq$2bjrd$1@dont-email.me>
 <68dc9b71-cf5d-4614-94e2-8a616e722a63@att.net> <vi03un$2cv9g$1@dont-email.me>
 <67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me>
 <a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net> <vi41rg$3cj8q$1@dont-email.me>
 <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me>
 <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me>
 <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
 <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
 <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
 <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 28 Nov 2024 18:09:17 +0100 (CET)
Injection-Info: dont-email.me; posting-host="39dde205281753068e84a9dc127f0f7e";
	logging-data="643298"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18GIjJMLAfNPxlGOFSZqiedb1/WvwZZ39E="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:eaPoK4ccEzfC+chwjaaff4WEpCA=
Content-Language: en-US
In-Reply-To: <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
Bytes: 2666

On 28.11.2024 17:45, joes wrote:
> Am Thu, 28 Nov 2024 11:39:05 +0100 schrieb WM:

>> A simpler arguments is this: All endsegments are in a decreasing
>> sequence.
> There is no decrease, they are all infinite.

Every endsegment has one number less than its predecessor.
That is called decrease.
> 
>> Before the decrease has reached finite endsegments, all are
>> infinite and share an infinite contents from E(1) = ℕ on. They have not
>> yet had the chance to reduce their infinite subset below infinity.
> All segments are infinite. Nothing can come "afterwards".

Then never the intersection is never empty.

Regards, WM
>