Deutsch English Français Italiano |
<via83s$jk72$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Thu, 28 Nov 2024 18:09:16 +0100 Organization: A noiseless patient Spider Lines: 20 Message-ID: <via83s$jk72$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <9e03d68c-ae1e-4e2f-8004-55e6f89adb98@att.net> <cbac19e1-c2fe-47d0-84ce-88000729988c@tha.de> <96af151c-285d-4161-842a-63019cac9699@att.net> <vhti1v$1r2tr$2@dont-email.me> <a7ec6cd4-3a9b-4671-8594-56586c0ce917@att.net> <vhvbs4$28n6o$2@dont-email.me> <09f8a86f-3f75-4af8-a190-0def76c1ab82@att.net> <vhvviq$2bjrd$1@dont-email.me> <68dc9b71-cf5d-4614-94e2-8a616e722a63@att.net> <vi03un$2cv9g$1@dont-email.me> <67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me> <a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net> <vi41rg$3cj8q$1@dont-email.me> <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me> <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Thu, 28 Nov 2024 18:09:17 +0100 (CET) Injection-Info: dont-email.me; posting-host="39dde205281753068e84a9dc127f0f7e"; logging-data="643298"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18GIjJMLAfNPxlGOFSZqiedb1/WvwZZ39E=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:eaPoK4ccEzfC+chwjaaff4WEpCA= Content-Language: en-US In-Reply-To: <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> Bytes: 2666 On 28.11.2024 17:45, joes wrote: > Am Thu, 28 Nov 2024 11:39:05 +0100 schrieb WM: >> A simpler arguments is this: All endsegments are in a decreasing >> sequence. > There is no decrease, they are all infinite. Every endsegment has one number less than its predecessor. That is called decrease. > >> Before the decrease has reached finite endsegments, all are >> infinite and share an infinite contents from E(1) = ℕ on. They have not >> yet had the chance to reduce their infinite subset below infinity. > All segments are infinite. Nothing can come "afterwards". Then never the intersection is never empty. Regards, WM >