Deutsch   English   Français   Italiano  
<viaa9e$jk72$4@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Thu, 28 Nov 2024 18:46:21 +0100
Organization: A noiseless patient Spider
Lines: 31
Message-ID: <viaa9e$jk72$4@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <96af151c-285d-4161-842a-63019cac9699@att.net> <vhti1v$1r2tr$2@dont-email.me>
 <a7ec6cd4-3a9b-4671-8594-56586c0ce917@att.net> <vhvbs4$28n6o$2@dont-email.me>
 <09f8a86f-3f75-4af8-a190-0def76c1ab82@att.net> <vhvviq$2bjrd$1@dont-email.me>
 <68dc9b71-cf5d-4614-94e2-8a616e722a63@att.net> <vi03un$2cv9g$1@dont-email.me>
 <67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me>
 <a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net> <vi41rg$3cj8q$1@dont-email.me>
 <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me>
 <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me>
 <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
 <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
 <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
 <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
 <via83s$jk72$2@dont-email.me>
 <e066fe42eeeac7b6371ebaa0f9b136be15128932@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Thu, 28 Nov 2024 18:46:22 +0100 (CET)
Injection-Info: dont-email.me; posting-host="39dde205281753068e84a9dc127f0f7e";
	logging-data="643298"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19zIx6Bkrh0ZXK8Ijgf+9QMixS4+rxpwTQ="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:RBzfuleb7CpX8OiLMlGWWI//OLA=
In-Reply-To: <e066fe42eeeac7b6371ebaa0f9b136be15128932@i2pn2.org>
Content-Language: en-US
Bytes: 3203

On 28.11.2024 18:36, joes wrote:
> Am Thu, 28 Nov 2024 18:09:16 +0100 schrieb WM:
>> On 28.11.2024 17:45, joes wrote:
>>> Am Thu, 28 Nov 2024 11:39:05 +0100 schrieb WM:
>>
>>>> A simpler arguments is this: All endsegments are in a decreasing
>>>> sequence.
>>> There is no decrease, they are all infinite.
>> Every endsegment has one number less than its predecessor.
>> That is called decrease.
> It is called a subset. It is still infinite

Yes this decrease produces subsets. All infinite subsets produce 
infinite intersections.
> 
>>>> Before the decrease has reached finite endsegments, all are infinite
>>>> and share an infinite contents from E(1) = ℕ on. They have not yet had
>>>> the chance to reduce their infinite subset below infinity.
>>> All segments are infinite. Nothing can come "afterwards".
>> Then the intersection is never empty.
> No finite intersection anyway.

No intersection of infinite endsegments is finite.

Every infinite endsegments has an infinite intersection with all its 
predecessors. If all endsegments are infinite, then this holds for all 
endsegments. They simply had not the chance to lose these numbers.

Regards, WM
>