Deutsch English Français Italiano |
<vid4ts$1777k$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Fri, 29 Nov 2024 20:33:16 +0100 Organization: A noiseless patient Spider Lines: 24 Message-ID: <vid4ts$1777k$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <a7ec6cd4-3a9b-4671-8594-56586c0ce917@att.net> <vhvbs4$28n6o$2@dont-email.me> <09f8a86f-3f75-4af8-a190-0def76c1ab82@att.net> <vhvviq$2bjrd$1@dont-email.me> <68dc9b71-cf5d-4614-94e2-8a616e722a63@att.net> <vi03un$2cv9g$1@dont-email.me> <67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me> <a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net> <vi41rg$3cj8q$1@dont-email.me> <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me> <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Fri, 29 Nov 2024 20:33:17 +0100 (CET) Injection-Info: dont-email.me; posting-host="5c34f1366b721b64e39d37d3519800a6"; logging-data="1285364"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1+HPSH0EhvXj/l9uYv5TURhmKKR9aawsx0=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:86yael7NaGrvycWpv+kyOtyOjsE= In-Reply-To: <vicbp2$1316h$1@dont-email.me> Content-Language: en-US Bytes: 2968 On 29.11.2024 13:23, FromTheRafters wrote: > WM was thinking very hard : >> On 29.11.2024 09:54, FromTheRafters wrote: >>> WM expressed precisely : >> >>>> But as long as infinitely many natnumbers have not left the >>>> endsegments, they stay inside all of them. And many are the same for >>>> all endsegments. Therefore the intersection of infinite endsegments >>>> is infinite. >>> >>> Natural numbers don't "leave", sets don't change. >> >> Call it as you like. Fact is that the function of endsegments is >> losing elements. The limit is the empty endsegment. > > Your sequence of endsegments (which are each countably infinte) is > indeed losing an element of N with each iteration. Losing an element is > not the same as reducing an infinite set's size though. The size of the intersection remains infinite as long as all endsegments remain infinite (= as long as only infinite endsegments are considered). Regards, WM