| Deutsch English Français Italiano |
|
<vidd65$18ddr$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
(extra-ordinary)
Date: Fri, 29 Nov 2024 22:54:13 +0100
Organization: A noiseless patient Spider
Lines: 24
Message-ID: <vidd65$18ddr$2@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
<a7ec6cd4-3a9b-4671-8594-56586c0ce917@att.net> <vhvbs4$28n6o$2@dont-email.me>
<09f8a86f-3f75-4af8-a190-0def76c1ab82@att.net> <vhvviq$2bjrd$1@dont-email.me>
<68dc9b71-cf5d-4614-94e2-8a616e722a63@att.net> <vi03un$2cv9g$1@dont-email.me>
<67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me>
<a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net> <vi41rg$3cj8q$1@dont-email.me>
<d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me>
<4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me>
<b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
<23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
<e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
<9e4bb6a7-9e7a-41a3-bd3b-4dbb7d2452f7@att.net> <vid5e0$1777j$1@dont-email.me>
<52861f86-6445-444b-b8b4-aca7d59a522d@att.net>
<2198c30e-bda9-4bfd-902c-3b0fe6391009@tha.de>
<7680dcfe-c669-4200-9b4a-ce107cafb375@att.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Fri, 29 Nov 2024 22:54:14 +0100 (CET)
Injection-Info: dont-email.me; posting-host="5c34f1366b721b64e39d37d3519800a6";
logging-data="1324475"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18vtEMOAUlHydCnljnryfmwQa7HBZOM+AA="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:fAKIQE1prdbaO5ZCZBgp2GFTz6E=
In-Reply-To: <7680dcfe-c669-4200-9b4a-ce107cafb375@att.net>
Content-Language: en-US
Bytes: 2834
On 29.11.2024 22:36, Jim Burns wrote:
> The end.segments are infinite.
> Their intersection is empty.
Contradiction in terms of inclusion monotony! The intersection is an
endsegment.
> Nothing is infinite and empty.
>
Up to every infinite endsegment E(n) the index n is finite and the
intersection is infinite.
∀k ∈ ℕ_def: ∩{E(1), E(2), ..., E(k)} = E(k).
There is no infinite set of indices in ℕ followed by the infinite
contents of endsegments. Therefore there is no infinite set of infinite
endsegments possible. Either the set of indices is infinite, then the
remaining contents is empty, or the remaining contents is infinite, then
the set of indices is finite.
Try to show a counter example: Infinitely many indices and
simultaneously infinite remainig contents.
Regards, WM