Deutsch   English   Français   Italiano  
<viel99$1keie$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: David Entwistle <qnivq.ragjvfgyr@ogvagrearg.pbz>
Newsgroups: rec.puzzles
Subject: Re: Log (base 2) of 3   --    (without a Calculator)
Date: Sat, 30 Nov 2024 09:18:33 -0000 (UTC)
Organization: A noiseless patient Spider
Lines: 34
Message-ID: <viel99$1keie$1@dont-email.me>
References: <e74d61389a863e5da9e26293fe8e90ba@www.novabbs.com>
	<875xok4mu4.fsf@rpi3> <97e7e6fb078310c8d4d600c247847957@www.novabbs.com>
	<vhipvk$1014$1@macpro.inf.ed.ac.uk>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Injection-Date: Sat, 30 Nov 2024 10:18:33 +0100 (CET)
Injection-Info: dont-email.me; posting-host="9519350e316f3012b6610138ce95a176";
	logging-data="1718862"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX1/01JfJtiEseFeW4d2afA+W"
User-Agent: Pan/0.149 (Bellevue; 4c157ba git@gitlab.gnome.org:GNOME/pan.git)
Cancel-Lock: sha1:+AOz43yiBbwh73NEsKRFyLfeHpg=
Bytes: 2148

On Tue, 19 Nov 2024 19:47:00 +0000 (UTC), Richard Tobin wrote:

> In article <97e7e6fb078310c8d4d600c247847957@www.novabbs.com>,
> HenHanna  <HenHanna@dev.null> wrote:
> 
>> i wonder if there's a way to get better (and better) approximations.
> 
> Look for more powers of 2 near to powers of 3.
> 
> For example,
> 
> 3^7  (= 2187)  > 2^11 (= 2048),  so 3 > 2^(11/7),  so log2(3) > 11/7 =
> 1.571+
> 3^10 (= 59049) < 2^16 (= 65536), so 3 < 2^(16/10), so log2(3) < 10/6 =
> 1.6
> 
> 3^12 is very close to 2^19, so log2(3) is very close to 19/12 = 1.583+
> 
> -- Richard

That's a very nice explanation.

Not a direct answer to HenHanna's original question, but interesting none 
the less. I was trying to work out how Babbage's difference engine, using 
finite differences, could be used to perform relaterd calculations.I got a 
bit distracted, but the following translation of Briggs' ARITHMETICA 
LOGARITHMICA was very informative.

https://www.17centurymaths.com/contents/albriggs.html 



-- 
David Entwistle