| Deutsch English Français Italiano |
|
<viel99$1keie$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: David Entwistle <qnivq.ragjvfgyr@ogvagrearg.pbz> Newsgroups: rec.puzzles Subject: Re: Log (base 2) of 3 -- (without a Calculator) Date: Sat, 30 Nov 2024 09:18:33 -0000 (UTC) Organization: A noiseless patient Spider Lines: 34 Message-ID: <viel99$1keie$1@dont-email.me> References: <e74d61389a863e5da9e26293fe8e90ba@www.novabbs.com> <875xok4mu4.fsf@rpi3> <97e7e6fb078310c8d4d600c247847957@www.novabbs.com> <vhipvk$1014$1@macpro.inf.ed.ac.uk> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Injection-Date: Sat, 30 Nov 2024 10:18:33 +0100 (CET) Injection-Info: dont-email.me; posting-host="9519350e316f3012b6610138ce95a176"; logging-data="1718862"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX1/01JfJtiEseFeW4d2afA+W" User-Agent: Pan/0.149 (Bellevue; 4c157ba git@gitlab.gnome.org:GNOME/pan.git) Cancel-Lock: sha1:+AOz43yiBbwh73NEsKRFyLfeHpg= Bytes: 2148 On Tue, 19 Nov 2024 19:47:00 +0000 (UTC), Richard Tobin wrote: > In article <97e7e6fb078310c8d4d600c247847957@www.novabbs.com>, > HenHanna <HenHanna@dev.null> wrote: > >> i wonder if there's a way to get better (and better) approximations. > > Look for more powers of 2 near to powers of 3. > > For example, > > 3^7 (= 2187) > 2^11 (= 2048), so 3 > 2^(11/7), so log2(3) > 11/7 = > 1.571+ > 3^10 (= 59049) < 2^16 (= 65536), so 3 < 2^(16/10), so log2(3) < 10/6 = > 1.6 > > 3^12 is very close to 2^19, so log2(3) is very close to 19/12 = 1.583+ > > -- Richard That's a very nice explanation. Not a direct answer to HenHanna's original question, but interesting none the less. I was trying to work out how Babbage's difference engine, using finite differences, could be used to perform relaterd calculations.I got a bit distracted, but the following translation of Briggs' ARITHMETICA LOGARITHMICA was very informative. https://www.17centurymaths.com/contents/albriggs.html -- David Entwistle