Deutsch English Français Italiano |
<vihfai$2cnof$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.logic Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Sun, 1 Dec 2024 11:55:15 +0100 Organization: A noiseless patient Spider Lines: 37 Message-ID: <vihfai$2cnof$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vh4f7p$2o5hn$1@dont-email.me> <vh4job$2ov2c$1@dont-email.me> <vh78jp$3cbq7$1@dont-email.me> <vh7d5c$3cpaf$1@dont-email.me> <5b8de1bc-9f6c-4dde-a7cd-9e22e8ce19d9@att.net> <vhata3$59e5$2@dont-email.me> <31419fde-62b3-46f3-89f6-a48f1fe82bc0@att.net> <vhc77g$hdd4$1@dont-email.me> <476ae6cb-1116-44b1-843e-4be90d594372@att.net> <vhhr6f$1q0r9$1@dont-email.me> <ffa63cb5-8898-4aa7-80eb-8b2c51c9986d@att.net> <vhkhun$28qt$1@dont-email.me> <vhmtph$j1ek$1@dont-email.me> <vhn1jk$jf6v$1@dont-email.me> <vhn3po$jvo1$1@dont-email.me> <vhn420$jf6v$3@dont-email.me> <vhpg51$13soc$1@dont-email.me> <vhpnrb$15239$1@dont-email.me> <vhs2gn$1kjtc$1@dont-email.me> <vhs4ue$1ku9t$1@dont-email.me> <vhv6or$280s6$1@dont-email.me> <vhvbjb$28n6o$1@dont-email.me> <vi1dbj$2moon$1@dont-email.me> <vi224l$2pgrd$1@dont-email.me> <vi4383$3csd4$2@dont-email.me> <vi4a6c$3dt4s$2@dont-email.me> <vi6p1l$3uoti$1@dont-email.me> <vi6unr$3v0dn$5@dont-email.me> <vihd3l$2d9fk$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 01 Dec 2024 11:55:15 +0100 (CET) Injection-Info: dont-email.me; posting-host="86f8475ec5053393eb87c43ad273cbe5"; logging-data="2514703"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18Ra/y8BCyP1wQRtB+aZXYWfduZNBsXP8k=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:Kxac7PYK0AQLWJmRSKHcLfUoRDk= In-Reply-To: <vihd3l$2d9fk$1@dont-email.me> Content-Language: en-US Bytes: 3348 On 01.12.2024 11:17, Mikko wrote: > On 2024-11-27 11:10:51 +0000, WM said: > >> On 27.11.2024 10:33, Mikko wrote: >>> On 2024-11-26 11:07:57 +0000, WM said: >>> >>>> On 26.11.2024 10:09, Mikko wrote: >>>>> On 2024-11-25 14:38:13 +0000, WM said: >>>> >>>>>> The simple example contradicts a bijection between the two sets >>>>>> described above. >>>>> >>>>> What does "contradicts a bijection" mean? >>>>> >>>> It shows that the mapping claimed to be a bijection is not a bijection. >>> >>> If so, no bijection is contradicted. >> >> The possibility of a bijection between the sets ℕ = {1, 2, 3, ...} >> and D = {10n | n ∈ ℕ} is contradicted. > > No, it is not. You merely deny it, disregarding obvious facts. Obvious is that for every interval (0, n] the relative covering is 1/10, and that there are no further black hats beyond all natnumbers n. > The function > f(x) = 10 * f obviously maps every element of ℕ to a different element of > D and there is no element of D that is not 10 * f for some f so this f is > a bijection between ℕ and D. It appears so. I have shown by a different example that it is wrong. The relative covering for every interval is 1/10, independent of the configuration of the hats available inside. The limit of this sequence is 1/10. Regards, WM