| Deutsch English Français Italiano |
|
<viih7c$2pbql$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers Date: Sun, 1 Dec 2024 21:33:48 +0100 Organization: A noiseless patient Spider Lines: 21 Message-ID: <viih7c$2pbql$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vi43br$3cllo$3@dont-email.me> <vi4ak0$3e1nc$1@dont-email.me> <vi4b5d$3dq30$1@dont-email.me> <40292abc147fee5a7bdd264b69d34ddf2061e59d@i2pn2.org> <vi4upt$3hg8t$1@dont-email.me> <c43fe07653eac2a9cc0432a6e289bfa1307613f8@i2pn2.org> <vi6rau$3v0dn$1@dont-email.me> <0bc3cdc8c096bba16decd94ad2af85d35da9b7b4@i2pn2.org> <vi7jv2$377e$1@dont-email.me> <9896cb31-806b-40a2-a03e-dc4aea744d04@att.net> <298a18e0-a0c6-4db2-901d-da255ecace0b@tha.de> <0b2e9a84-f5b3-4f02-8f78-7781da9175af@att.net> <vid55l$1777k$3@dont-email.me> <df6328ea-a741-426c-bb1a-4bde16cbfcab@att.net> <vidbob$18gdq$2@dont-email.me> <47ccedfd-7c29-4c1a-a411-bbb0c27726e8@att.net> <vieuiu$1l1ot$3@dont-email.me> <890acbe4-3d0d-476f-be76-07fd33903746@att.net> <vifnq8$1rcah$3@dont-email.me> <7d09acd3-9778-4271-ac10-2f202d611bc5@att.net> <vig1lg$1v1m4$1@dont-email.me> <4005adad-0ccf-473c-883a-c82aef32e82c@att.net> <vihc84$2ct5q$1@dont-email.me> <f7bc6159-1f90-4b84-ba9d-df694b592c07@att.net> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Sun, 01 Dec 2024 21:33:49 +0100 (CET) Injection-Info: dont-email.me; posting-host="8b8404cf48e5ae176f085d72b783b3af"; logging-data="2928469"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19Hw1CbLVmELRljd0wNjEAoIbc68740lnY=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:1N2K7n/SlXJarhRvKY3Ufg4jzwA= In-Reply-To: <f7bc6159-1f90-4b84-ba9d-df694b592c07@att.net> Content-Language: en-US Bytes: 2551 On 01.12.2024 21:02, Jim Burns wrote: > On 12/1/2024 5:02 AM, WM wrote: >> E(1), E(2), E(3), ... >> and >> E(1), E(1)∩E(2), E(1)∩E(2)∩E(3), ... >> are identical for every n and in the limit >> because >> E(1)∩E(2)∩...∩E(n) = E(n). > > Identical sequences without an empty end.segment. > Identical empty set of common finite.cardinals. > > Inclusion monotony does not prevent > an empty set of common finite.cardinals > without an empty end.segment. Stupid or impudent. No reason to continue. Regards, WM