Deutsch   English   Français   Italiano  
<vijhrd$34mp8$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: Moebius <invalid@example.invalid>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Mon, 2 Dec 2024 06:50:37 +0100
Organization: A noiseless patient Spider
Lines: 38
Message-ID: <vijhrd$34mp8$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <vi03un$2cv9g$1@dont-email.me>
 <67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me>
 <a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net> <vi41rg$3cj8q$1@dont-email.me>
 <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me>
 <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me>
 <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
 <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
 <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
 <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
 <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me>
 <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me>
 <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me>
 <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me>
 <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me>
 <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
Reply-To: invalid@example.invalid
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 02 Dec 2024 06:50:37 +0100 (CET)
Injection-Info: dont-email.me; posting-host="42f5c2b502c9af350f9bc6411f7fd1ea";
	logging-data="3300136"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19zqO0CYBMSRVf8sbC7a/70"
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:9p/HQoP2cgk5te7MsbNojtE3eMI=
Content-Language: de-DE
In-Reply-To: <viiqfd$2qq41$5@dont-email.me>
Bytes: 3005

Am 02.12.2024 um 00:11 schrieb Chris M. Thomasson:
> On 11/30/2024 3:12 AM, WM wrote:

>> Finite initial segment[s]: F(n) = {1, 2, 3, ..., n}    (n e IN).

>> Endsegment[s]: E(n) = {n, n+1, n+2, ...}    (n e IN).

Right ... where

	{1, 2, 3, ..., n} := {m e IN : m <= n}}
and
	{n, n+1, n+2, ...} := {m e IN : m >= n}} .

>>>> The sequence of endsegments decreases. (WM)
>>>
>>> In what manner [is it] decreasing?

          An e IN: E(n+1) c E(n) .

>> The [endegmanets] are losing elements, one after the other:
>> ∀k ∈ ℕ : E(k+1) = E(k) \ {k}

Indeed.

>> But each endsegment has only one element less than its predecessor.

If you say so. Still for all n e IN: card(E(n)) = aleph_0.

Himt: Infnitely many <whatevers> "minus" one <whatever> are still 
infinitely many <whatevers>.

>>> When you filter out the FISON, the rest, the tail, as a set, stays 
>>> the same size of aleph_zero.

Right.

	An e IN: |IN \ F(n)| = aleph_0 .