Deutsch English Français Italiano |
<vijhrd$34mp8$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: Moebius <invalid@example.invalid> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 2 Dec 2024 06:50:37 +0100 Organization: A noiseless patient Spider Lines: 38 Message-ID: <vijhrd$34mp8$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vi03un$2cv9g$1@dont-email.me> <67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me> <a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net> <vi41rg$3cj8q$1@dont-email.me> <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me> <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> Reply-To: invalid@example.invalid MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 02 Dec 2024 06:50:37 +0100 (CET) Injection-Info: dont-email.me; posting-host="42f5c2b502c9af350f9bc6411f7fd1ea"; logging-data="3300136"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19zqO0CYBMSRVf8sbC7a/70" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:9p/HQoP2cgk5te7MsbNojtE3eMI= Content-Language: de-DE In-Reply-To: <viiqfd$2qq41$5@dont-email.me> Bytes: 3005 Am 02.12.2024 um 00:11 schrieb Chris M. Thomasson: > On 11/30/2024 3:12 AM, WM wrote: >> Finite initial segment[s]: F(n) = {1, 2, 3, ..., n} (n e IN). >> Endsegment[s]: E(n) = {n, n+1, n+2, ...} (n e IN). Right ... where {1, 2, 3, ..., n} := {m e IN : m <= n}} and {n, n+1, n+2, ...} := {m e IN : m >= n}} . >>>> The sequence of endsegments decreases. (WM) >>> >>> In what manner [is it] decreasing? An e IN: E(n+1) c E(n) . >> The [endegmanets] are losing elements, one after the other: >> ∀k ∈ ℕ : E(k+1) = E(k) \ {k} Indeed. >> But each endsegment has only one element less than its predecessor. If you say so. Still for all n e IN: card(E(n)) = aleph_0. Himt: Infnitely many <whatevers> "minus" one <whatever> are still infinitely many <whatevers>. >>> When you filter out the FISON, the rest, the tail, as a set, stays >>> the same size of aleph_zero. Right. An e IN: |IN \ F(n)| = aleph_0 .