| Deutsch English Français Italiano |
|
<vikg6c$3c4tu$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
(extra-ordinary)
Date: Mon, 2 Dec 2024 15:28:30 +0100
Organization: A noiseless patient Spider
Lines: 21
Message-ID: <vikg6c$3c4tu$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
<67d9867b-2614-4475-975c-938bafca5c00@att.net> <vi1vep$2pjuo$1@dont-email.me>
<a4ab640d-e482-42b0-bfb8-f3690b935ce1@att.net> <vi41rg$3cj8q$1@dont-email.me>
<d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me>
<4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me>
<b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
<23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
<e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
<71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
<via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me>
<viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me>
<vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me>
<vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me>
<bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me>
<vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
<vik73d$3a9jm$1@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 02 Dec 2024 15:28:29 +0100 (CET)
Injection-Info: dont-email.me; posting-host="ce3d3b9e7489de49abef8eb953641234";
logging-data="3543998"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX186Tha1QIXX7fflf8wzvzo/Bw4HIYxx7nk="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:6SophPnfDHFbWO4rNcsMWNwCxL8=
In-Reply-To: <vik73d$3a9jm$1@dont-email.me>
Content-Language: en-US
Bytes: 2715
On 02.12.2024 12:53, FromTheRafters wrote:
>>> Endsegment E(n) = {n, n+1, n+2, ...}
>
> This is his definition of endsegment, which as almost anyone can see,
> has no last element, so yes it is infinite. He says 'infinite
> endsegment' as if there were a choice, only to add confusion.
Infinite endsegments contain an infinite set each, infinitely many
elements of which are in the intersection. An empty intersection cannot
come before an empty endsegment has been produced by losing one element
at every step.
E(1), E(2), E(3), ...
and
E(1), E(1)∩E(2), E(1)∩E(2)∩E(3), ...
are identical for every n and in the limit because
E(1)∩E(2)∩...∩E(n) = E(n).
Regards, WM