Deutsch   English   Français   Italiano  
<vil0t7$3h3cr$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: FromTheRafters <FTR@nomail.afraid.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
Date: Mon, 02 Dec 2024 14:13:40 -0500
Organization: Peripheral Visions
Lines: 30
Message-ID: <vil0t7$3h3cr$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>   <vi41rg$3cj8q$1@dont-email.me> <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me> <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me> <vikkom$3ds36$1@dont-email.me> <vikoi8$3e7kd$1@dont-email.me>
Reply-To: erratic.howard@gmail.com
MIME-Version: 1.0
Content-Type: text/plain; charset="utf-8"; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Mon, 02 Dec 2024 20:13:43 +0100 (CET)
Injection-Info: dont-email.me; posting-host="3bf30b5d4491a807d4175c9fb17a2039";
	logging-data="3706267"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19bJ67ezC59/1XQRGSLyNm3K+2rr/jMOuw="
Cancel-Lock: sha1:mDDmRJ5Ewnd5mAjXp0igd9hUVSY=
X-ICQ: 1701145376
X-Newsreader: MesNews/1.08.06.00-gb
Bytes: 2988

WM formulated on Monday :
> On 02.12.2024 16:46, FromTheRafters wrote:
>> WM wrote :
>
>>> E(1), E(2), E(3), ...
>>> and
>>> E(1), E(1)∩E(2), E(1)∩E(2)∩E(3), ...
>>> are identical for every n and in the limit because
>>> E(1)∩E(2)∩...∩E(n) = E(n).
>> 
>> Non sequitur. That which is true for finite sequences is not necessarily 
>> true for infinite sequences.
>
> As easily can be obtaied from the above it is necessarily true that up to 
> every term 

Yes, your nth term is the term common to all previous sets as members 
of the sequence. This final 'n' is always a member of the naturals. For 
infinite sets of naturals, there is no last element to be common to all 
previous sets, so it, the intersection, is empty.

> and therefore also in the limit the sequences of endsegments and 
> of intersections are identical.

Says you, but you can't prove the conjecture.

> Every contrary opinion is matheology, outside 
> of mathematics.

Says you, but you have little credibility here concerning mathematics.