| Deutsch English Français Italiano |
|
<vil0t7$3h3cr$1@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: FromTheRafters <FTR@nomail.afraid.org> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 02 Dec 2024 14:13:40 -0500 Organization: Peripheral Visions Lines: 30 Message-ID: <vil0t7$3h3cr$1@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vi41rg$3cj8q$1@dont-email.me> <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me> <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me> <vikkom$3ds36$1@dont-email.me> <vikoi8$3e7kd$1@dont-email.me> Reply-To: erratic.howard@gmail.com MIME-Version: 1.0 Content-Type: text/plain; charset="utf-8"; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Mon, 02 Dec 2024 20:13:43 +0100 (CET) Injection-Info: dont-email.me; posting-host="3bf30b5d4491a807d4175c9fb17a2039"; logging-data="3706267"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19bJ67ezC59/1XQRGSLyNm3K+2rr/jMOuw=" Cancel-Lock: sha1:mDDmRJ5Ewnd5mAjXp0igd9hUVSY= X-ICQ: 1701145376 X-Newsreader: MesNews/1.08.06.00-gb Bytes: 2988 WM formulated on Monday : > On 02.12.2024 16:46, FromTheRafters wrote: >> WM wrote : > >>> E(1), E(2), E(3), ... >>> and >>> E(1), E(1)∩E(2), E(1)∩E(2)∩E(3), ... >>> are identical for every n and in the limit because >>> E(1)∩E(2)∩...∩E(n) = E(n). >> >> Non sequitur. That which is true for finite sequences is not necessarily >> true for infinite sequences. > > As easily can be obtaied from the above it is necessarily true that up to > every term Yes, your nth term is the term common to all previous sets as members of the sequence. This final 'n' is always a member of the naturals. For infinite sets of naturals, there is no last element to be common to all previous sets, so it, the intersection, is empty. > and therefore also in the limit the sequences of endsegments and > of intersections are identical. Says you, but you can't prove the conjecture. > Every contrary opinion is matheology, outside > of mathematics. Says you, but you have little credibility here concerning mathematics.