Deutsch English Français Italiano |
<vim6rm$3sjje$3@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: "Chris M. Thomasson" <chris.m.thomasson.1@gmail.com> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Mon, 2 Dec 2024 22:01:27 -0800 Organization: A noiseless patient Spider Lines: 50 Message-ID: <vim6rm$3sjje$3@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vijhrd$34mp8$1@dont-email.me> <vilh59$3k21l$5@dont-email.me> <vilheq$3ks01$3@dont-email.me> <vilhjk$3k21l$9@dont-email.me> <vilhk8$3ks01$4@dont-email.me> <vilhnl$3k21l$10@dont-email.me> <viljdo$3k21l$12@dont-email.me> <vim52i$3s6qb$1@dont-email.me> <vim58c$3sjje$1@dont-email.me> <vim61c$3s6qb$3@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 03 Dec 2024 07:01:31 +0100 (CET) Injection-Info: dont-email.me; posting-host="f777e730b2e8168ebcdb2932c05660c1"; logging-data="4083310"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18LCmc6GdTPuL0lG710Z3UB6oB8Mu/KCd0=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:mk/07eNdUiAo+I1zr5jMAjOlxGI= In-Reply-To: <vim61c$3s6qb$3@dont-email.me> Content-Language: en-US Bytes: 3248 On 12/2/2024 9:47 PM, Moebius wrote: > Am 03.12.2024 um 06:34 schrieb Chris M. Thomasson: > >> What about {1, 2, 3, ..., n}, where n is taken to infinity? No limit? > > It's slightly complicated. :-P > > If we explicitly refer to sets, say, the sets S_1, S_2, S_3, ... > > We may call the sequence (S_1, S_2, S_3, ...) a "set sequence". > > Moreover we may define a certain limit (for such sequences) called "set > limit". > > Then the following can be shown: > > lim_(n->oo) {1, 2, 3, ..., n} = {1, 2, 3, ...} . > > Or, using defined symbols: > > lim_(n->oo) F(n) = IN . > > [ The sequence here is (F(1), F(2), F(3), ...). It's limit IN. ] > > On the other hand: > > lim_(n->oo) {n, n+1, n+2, ...} = {} . > > Hope this helps. :-P > > . > . > . > Sometimes I like to think of the set of all natural numbers as an n-ary tree, binary here, wrt zero as a main root, so to speak: 0 / \ / \ / \ / \ 1 2 / \ / \ / \ / \ 3 4 5 6 ......................... On and on. A lot of math can be applied to it.