| Deutsch English Français Italiano |
|
<vimr2i$3vv5r$6@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
(extra-ordinary)
Date: Tue, 3 Dec 2024 12:46:26 +0100
Organization: A noiseless patient Spider
Lines: 23
Message-ID: <vimr2i$3vv5r$6@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
<d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me>
<4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me>
<b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
<23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
<e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
<71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
<via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me>
<viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me>
<vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me>
<vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me>
<bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me>
<vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
<vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me>
<vikkom$3ds36$1@dont-email.me> <vikoi8$3e7kd$1@dont-email.me>
<9eaeab963bd5f3825f745c8990c9901a690f9eba@i2pn2.org>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 03 Dec 2024 12:46:27 +0100 (CET)
Injection-Info: dont-email.me; posting-host="083c203e078729021fda9db4a36efa00";
logging-data="4193467"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX189S+URoVjzV1INODfPRF+5RGkqF6C/XUU="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:oXrBk+W7LTycmI3u/XT/Ueb6TCU=
Content-Language: en-US
In-Reply-To: <9eaeab963bd5f3825f745c8990c9901a690f9eba@i2pn2.org>
Bytes: 2950
On 02.12.2024 20:06, joes wrote:
> Am Mon, 02 Dec 2024 17:51:22 +0100 schrieb WM:
>> On 02.12.2024 16:46, FromTheRafters wrote:
>>> WM wrote :
>>
>>>> E(1), E(2), E(3), ...
>>>> and E(1), E(1)∩E(2), E(1)∩E(2)∩E(3), ...
>>>> are identical for every n and in the limit because E(1)∩E(2)∩...∩E(n)
>>>> = E(n).
>>> Non sequitur. That which is true for finite sequences is not
>>> necessarily true for infinite sequences.
>> As easily can be obtaied from the above it is necessarily true that up
>> to every term and therefore also in the limit the sequences of
>> endsegments and of intersections are identical. Every contrary opinion
>> is matheology, outside of mathematics.
> What is the limit?
If infinity is actual, then the FISONs {1, 2, 3, ..., n} have a limit,
then the limit of the sequence of FISONs is ℕ. Then the limit of the
complementary endsegments is the empty set.
Regards, WM