| Deutsch English Français Italiano |
|
<vimuji$3vqhi$4@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Tue, 3 Dec 2024 13:46:43 +0100 Organization: A noiseless patient Spider Lines: 16 Message-ID: <vimuji$3vqhi$4@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <vi41rg$3cj8q$1@dont-email.me> <d124760c-9ff9-479f-b687-482c108adf68@att.net> <vi56or$3j04f$1@dont-email.me> <4a810760-86a1-44bb-a191-28f70e0b361b@att.net> <vi6uc3$3v0dn$4@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vik73d$3a9jm$1@dont-email.me> <vikg6c$3c4tu$1@dont-email.me> <vikkom$3ds36$1@dont-email.me> <vikoi8$3e7kd$1@dont-email.me> <vil0t7$3h3cr$1@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 7bit Injection-Date: Tue, 03 Dec 2024 13:46:42 +0100 (CET) Injection-Info: dont-email.me; posting-host="083c203e078729021fda9db4a36efa00"; logging-data="4188722"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX19/Ne1ShyJKDFtGzTpd+FYD6CWd+5szscY=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:EQXDnpY/Dglf8vQHlAIt6CE5Hi4= In-Reply-To: <vil0t7$3h3cr$1@dont-email.me> Content-Language: en-US Bytes: 2581 On 02.12.2024 20:13, FromTheRafters wrote: > WM formulated on Monday : > Yes, your nth term is the term common to all previous sets as members of > the sequence. This final 'n' is always a member of the naturals. For > infinite sets of naturals, there is no last element to be common to all > previous sets, so it, the intersection, is empty. > >> and therefore also in the limit the sequences of endsegments and of >> intersections are identical. > > Says you, but you can't prove the conjecture. Identical sequences have the same limit. Regards, WM