Deutsch   English   Français   Italiano  
<vin583$40o6$2@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: WM <wolfgang.mueckenheim@tha.de>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers
 (extra-ordinary)
Date: Tue, 3 Dec 2024 15:40:04 +0100
Organization: A noiseless patient Spider
Lines: 19
Message-ID: <vin583$40o6$2@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me>
 <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me>
 <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net>
 <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de>
 <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org>
 <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me>
 <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me>
 <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me>
 <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me>
 <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me>
 <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me>
 <vijhrd$34mp8$1@dont-email.me> <vilh59$3k21l$5@dont-email.me>
 <vilheq$3ks01$3@dont-email.me> <vilhjk$3k21l$9@dont-email.me>
 <vilhk8$3ks01$4@dont-email.me> <vilhnl$3k21l$10@dont-email.me>
 <viljdo$3k21l$12@dont-email.me> <vim52i$3s6qb$1@dont-email.me>
 <vim58c$3sjje$1@dont-email.me> <vim61c$3s6qb$3@dont-email.me>
 <vim6qf$3s6qb$5@dont-email.me>
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Tue, 03 Dec 2024 15:40:03 +0100 (CET)
Injection-Info: dont-email.me; posting-host="083c203e078729021fda9db4a36efa00";
	logging-data="131846"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX18MYhut4kaRUiDkhx6rWexEeA61cXNLyfE="
User-Agent: Mozilla Thunderbird
Cancel-Lock: sha1:J6gM738XA92lY2nd9YoiP/bOhFc=
Content-Language: en-US
In-Reply-To: <vim6qf$3s6qb$5@dont-email.me>
Bytes: 2482

On 03.12.2024 07:00, Moebius wrote:
> Am 03.12.2024 um 06:47 schrieb Moebius:
>> Am 03.12.2024 um 06:34 schrieb Chris M. Thomasson:
> 
>> Then the following can be shown:
>>
>>       lim_(n->oo) {1, 2, 3, ..., n} = {1, 2, 3, ...} .
>>
> 
> While this seems to be intuitively clear, the following is less clear 
> (I'd say):
> 
>>
>>       lim_(n->oo) {n, n+1, n+2, ...} = {} .

The second is an unavoidable consequence of the first.

Regards, WM