Deutsch English Français Italiano |
<vin583$40o6$2@dont-email.me> View for Bookmarking (what is this?) Look up another Usenet article |
Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail From: WM <wolfgang.mueckenheim@tha.de> Newsgroups: sci.math Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary) Date: Tue, 3 Dec 2024 15:40:04 +0100 Organization: A noiseless patient Spider Lines: 19 Message-ID: <vin583$40o6$2@dont-email.me> References: <vg7cp8$9jka$1@dont-email.me> <b2d7ee1f-33ab-44b6-ac90-558ac2f768a7@att.net> <vi7tnf$4oqa$1@dont-email.me> <23311c1a-1487-4ee4-a822-cd965bd024a0@att.net> <e9eb6455-ed0e-43f6-9a53-61aa3757d22d@tha.de> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vijhrd$34mp8$1@dont-email.me> <vilh59$3k21l$5@dont-email.me> <vilheq$3ks01$3@dont-email.me> <vilhjk$3k21l$9@dont-email.me> <vilhk8$3ks01$4@dont-email.me> <vilhnl$3k21l$10@dont-email.me> <viljdo$3k21l$12@dont-email.me> <vim52i$3s6qb$1@dont-email.me> <vim58c$3sjje$1@dont-email.me> <vim61c$3s6qb$3@dont-email.me> <vim6qf$3s6qb$5@dont-email.me> MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8; format=flowed Content-Transfer-Encoding: 8bit Injection-Date: Tue, 03 Dec 2024 15:40:03 +0100 (CET) Injection-Info: dont-email.me; posting-host="083c203e078729021fda9db4a36efa00"; logging-data="131846"; mail-complaints-to="abuse@eternal-september.org"; posting-account="U2FsdGVkX18MYhut4kaRUiDkhx6rWexEeA61cXNLyfE=" User-Agent: Mozilla Thunderbird Cancel-Lock: sha1:J6gM738XA92lY2nd9YoiP/bOhFc= Content-Language: en-US In-Reply-To: <vim6qf$3s6qb$5@dont-email.me> Bytes: 2482 On 03.12.2024 07:00, Moebius wrote: > Am 03.12.2024 um 06:47 schrieb Moebius: >> Am 03.12.2024 um 06:34 schrieb Chris M. Thomasson: > >> Then the following can be shown: >> >> lim_(n->oo) {1, 2, 3, ..., n} = {1, 2, 3, ...} . >> > > While this seems to be intuitively clear, the following is less clear > (I'd say): > >> >> lim_(n->oo) {n, n+1, n+2, ...} = {} . The second is an unavoidable consequence of the first. Regards, WM