Deutsch   English   Français   Italiano  
<vipaue$qd3r$1@dont-email.me>

View for Bookmarking (what is this?)
Look up another Usenet article

Path: ...!eternal-september.org!feeder3.eternal-september.org!news.eternal-september.org!.POSTED!not-for-mail
From: FromTheRafters <FTR@nomail.afraid.org>
Newsgroups: sci.math
Subject: Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
Date: Wed, 04 Dec 2024 05:29:28 -0500
Organization: Peripheral Visions
Lines: 48
Message-ID: <vipaue$qd3r$1@dont-email.me>
References: <vg7cp8$9jka$1@dont-email.me> <71758f338eb239b7419418f49dfd8177c59d778b@i2pn2.org> <via83s$jk72$2@dont-email.me> <viag8h$lvep$1@dont-email.me> <viaj9q$l91n$1@dont-email.me> <vibvfo$10t7o$1@dont-email.me> <vic6m9$11mrq$4@dont-email.me> <vicbp2$1316h$1@dont-email.me> <vid4ts$1777k$2@dont-email.me> <vidcv3$18pdu$1@dont-email.me> <bdbc0e3d-1db2-4d6a-9f71-368d36d96b40@tha.de> <vier32$1madr$1@dont-email.me> <vierv5$1l1ot$2@dont-email.me> <viiqfd$2qq41$5@dont-email.me> <vijhrd$34mp8$1@dont-email.me> <vilh59$3k21l$5@dont-email.me> <vilheq$3ks01$3@dont-email.me> <vilhjk$3k21l$9@dont-email.me> <vilhk8$3ks01$4@dont-email.me> <vilhnl$3k21l$10@dont-email.me> <viljdo$3k21l$12@dont-email.me> <87frn50zjp.fsf@bsb.me.uk> <vinuvc$cdlu$1@dont-email.me> <vinvvu$c7p5$6@dont-email.me> <vio0u4$c7p5$8@dont-email.me> <vio8rj$ei97$5@dont-email.me> <vio9nu$f13q$1@dont-email.me> <vip1f1$npsr$2@dont-email.me>
Reply-To: erratic.howard@gmail.com
MIME-Version: 1.0
Content-Type: text/plain; charset="iso-8859-15"; format=flowed
Content-Transfer-Encoding: 8bit
Injection-Date: Wed, 04 Dec 2024 11:29:35 +0100 (CET)
Injection-Info: dont-email.me; posting-host="36d1760a1ed0cb3157bb9bb0b6985926";
	logging-data="865403"; mail-complaints-to="abuse@eternal-september.org";	posting-account="U2FsdGVkX19K42MJlI/7V+HAUhvIIDFUoB9y8UKO5Yc="
Cancel-Lock: sha1:KRczJQ//qQ5Nswf5cJJB4srI37k=
X-Newsreader: MesNews/1.08.06.00-gb
X-ICQ: 1701145376
Bytes: 3398

Moebius expressed precisely :
> Am 04.12.2024 um 02:02 schrieb Moebius:
>> Am 04.12.2024 um 01:47 schrieb Chris M. Thomasson:
>>> On 12/3/2024 2:32 PM, Moebius wrote:
>>>> Am 03.12.2024 um 23:16 schrieb Moebius:
>>>>> Am 03.12.2024 um 22:59 schrieb Chris M. Thomasson:
>>>>
>>>>>> However, there is no largest natural number, when I think of that I see 
>>>>>> no limit to the naturals.
>>>>
>>>> Right. No "coventional" limit. Actually,
>>>>
>>>>       "lim_(n->oo) n"
>>>>
>>>> does not exist.
>>>
>>> In the sense of as n tends to infinity there is no limit that can be 
>>> reached [...]?
>> 
>> Exactly.
>> 
>> We say, n is "growing beyond all bounds". :-P
>
> On the other hand, if we focus on the fact that the natural numbers are sets 
> _in the context of set theory_, namely
>
>        0 = {}, 1 = {{}}, 2 = {{}, {{}}, ...

Typo, needs another closing curly bracket.

> =>    0 = {}, 1 = {0}, 2 = {0, 1}, ...
>
> (due to von Neumann)
>
> then we may conisider the "set-theoretic limit" of the sequence
>
>       (0, 1, 2, ...) = ({}, {0}, {0, 1}, ...).
>
> This way we get:
>
>       LIM_(n->oo) n = {0, 1, 2, ...} = IN. :-P
>
> I'd like to mention that "lim_(n->oo) n" is "old math" (oldies but goldies) 
> while "LIM_(n->oo) n" is "new math" (only possible after the invention of set 
> theory (->Cantor) and later developments (->axiomatic set theory, natural 
> numbers due to von Neumann, etc.).

If you say so, but I haven't seen this written anywhere.